[PD-cvs] externals/mrpeach/sqosc~ sqosc~-help.pd, NONE, 1.1 sqosc~.c, NONE, 1.1 sqosc-help.pd, 1.1, NONE sqosc.c, 1.1, NONE

Martin Peach mrpeach at users.sourceforge.net
Mon Nov 13 18:54:13 CET 2006


Update of /cvsroot/pure-data/externals/mrpeach/sqosc~
In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv1028

Added Files:
	sqosc~-help.pd sqosc~.c 
Removed Files:
	sqosc-help.pd sqosc.c 
Log Message:
Changed file names to conform to ~convention. 


--- NEW FILE: sqosc~.c ---
/* sqosc.c Martin Peach 20060613 based on d_osc.c */
/* 20060707 using x-x^3/3 to smooth the ramp */
/* Copyright (c) 1997-1999 Miller Puckette.
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.  */

/* sinusoidal oscillator and table lookup; see also tabosc4~ in d_array.c.
*/

#include "m_pd.h"
#include "math.h"
#include <stdio.h> /* for file io */

#define UNITBIT32 1572864.  /* 3*2^19; bit 32 has place value 1 */

    /* machine-dependent definitions.  These ifdefs really
    should have been by CPU type and not by operating system! */
#ifdef IRIX
    /* big-endian.  Most significant byte is at low address in memory */
#define HIOFFSET 0    /* word offset to find MSB */
#define LOWOFFSET 1    /* word offset to find LSB */
#define int32 long  /* a data type that has 32 bits */
#endif /* IRIX */

#ifdef MSW
    /* little-endian; most significant byte is at highest address */
#define HIOFFSET 1
#define LOWOFFSET 0
#define int32 long
#endif

#if defined(__FreeBSD__) || defined(__APPLE__)
#include <machine/endian.h>
#endif

#ifdef __APPLE__
#define __BYTE_ORDER BYTE_ORDER
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#endif                                                                          

#ifdef __linux__
#include <endian.h>
#endif

#if defined(__unix__) || defined(__APPLE__)
#if !defined(__BYTE_ORDER) || !defined(__LITTLE_ENDIAN)                         
#error No byte order defined                                                    
#endif                                                                          

#if __BYTE_ORDER == __LITTLE_ENDIAN                                             
#define HIOFFSET 1                                                              
#define LOWOFFSET 0                                                             
#else                                                                           
#define HIOFFSET 0    /* word offset to find MSB */                             
#define LOWOFFSET 1    /* word offset to find LSB */                            
#endif /* __BYTE_ORDER */                                                       
#include <sys/types.h>
#define int32 int32_t
#endif /* __unix__ or __APPLE__*/

union tabfudge
{
    double tf_d;
    int32 tf_i[2];
};

static t_class *sqosc_class, *scalarsqosc_class;

static float *sqosc_table;
/* COSTABSIZE is 512 in m_pd.h, we start with that... */
#define LOGSQOSCTABSIZE 9
#define SQOSCTABSIZE 512
#define HALFSQOSCTABSIZE 256

typedef struct _sqosc
{
    t_object  x_obj;
    double    x_phase;
    float     x_conv;
    float     x_f; /* frequency if scalar */
    float     x_pw; /* pulse width 0-1, default 0.5 */
    float     x_bw; /* bandwidth */
    float     x_slew; /* slew time in samples */
    double    x_dpw; /* pulse width in this pulse */
    int       x_pulse_ended; /* nonzero if pulse has finished */
//    FILE      *x_logfp;
//    int       x_logcount;
} t_sqosc;

static void sqosc_maketable(void);
void sqosc_tilde_setup(void);
static void sqosc_ft1(t_sqosc *x, t_float f);
static void sqosc_pw(t_sqosc *x, t_float pw);
static void sqosc_dsp(t_sqosc *x, t_signal **sp);
static t_int *sqosc_perform(t_int *w);
static void *sqosc_new(t_floatarg f, t_floatarg pw, t_float bw);

static void sqosc_maketable(void)
{
    int    i;
    float  *fp, phase, phsinc = (2. * 3.14159) / SQOSCTABSIZE; 
    union  tabfudge tf;
    //FILE   *cosfp;

    if (sqosc_table) return;
    //cosfp = fopen("sqosctable.txt", "wb");
    sqosc_table = (float *)getbytes(sizeof(float) * (SQOSCTABSIZE+1));
    for (i = SQOSCTABSIZE + 1, fp = sqosc_table, phase = 0; i--;
        fp++, phase += phsinc)
    {
        *fp = cos(phase);
        //fprintf(cosfp, "%f: %f\n", phase, *fp);
    }
    //fclose(cosfp);
    /* here we check at startup whether the byte alignment
        is as we declared it.  If not, the code has to be
        recompiled the other way. */
    tf.tf_d = UNITBIT32 + 0.5;
    if ((unsigned)tf.tf_i[LOWOFFSET] != 0x80000000)
        bug("cos~: unexpected machine alignment");
}

static void *sqosc_new(t_floatarg f, t_floatarg pw, t_floatarg bw)
{
    t_sqosc *x = (t_sqosc *)pd_new(sqosc_class);

    x->x_f = f; /* the initial frequency in Hz */
    outlet_new(&x->x_obj, gensym("signal"));
    inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
    inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("pw"));
    post("sqosc_new frequency %f, pulsewidth %f bandwidth %f", f, pw, bw);
    x->x_phase = 0;
    x->x_conv = 0;
    if ((pw <= 0)||(pw >= 1))
    {
        post("sqosc: second argument (pulse width) must be greater than 0 and less than 1, using 0.5");
        x->x_pw = 0.5 * SQOSCTABSIZE;
    }
    else x->x_pw = pw * SQOSCTABSIZE;
    if (bw < 0)
    {
        post("sqosc: third argument (bandwidth) must be greater than 0, using 10000");
        x->x_bw = 10000;
    }
    else x->x_bw = bw;
    x->x_slew = HALFSQOSCTABSIZE/x->x_bw;/* slew = time of half bandwidth cycle */
    x->x_dpw = x->x_pw; /* pulse width in this pulse */
    x->x_pulse_ended = 1; /* nonzero if pulse has finished */
//    x->x_logfp = fopen("sqosclog.txt", "wb");
//    x->x_logcount = 0;
    return (x);
}

/*
This is corrected from Chun Lee's explanation in an email at:
http://music.columbia.edu/pipermail/music-dsp/2004-November/028814.html

1-> a double variable UNITBIT32 is assigned to 1572864. This is what it
looks like in memory in a little endian machine:
byte 7   byte 6   byte 5   byte 4   byte 3   byte 2   byte 1    byte 0
00000000 00000000 00000000 00000000 00000000 00000000 0001 1100 1000001 0
|<------fraction------------------>|<----1572864--------->|exponent    |sign|

The reason for 1572864 (1.5 X 2^20) is that its representation in IEEE754 format (double)
has 51 zeros to the right of a placeholding 1 bit, which can then be used as
a wide fixed-point register with the binary point at bit 32, so the lower 32 bits
can be used as a fractional accumulator with 32-bit precision.
Adding 1 to INITBIT32 adds a 1 at bit 32, with no change in exponent,
so the lower 32 bits act as a fraction of one. The 31 zero bits in the integer part
can be set as high as 2147483647 (31 1s) without affecting the precision.

The upper 32 bits are 1094189056, or 01000001 00111000 00000000 00000000 in binary.
The sign bit is zero, or positive. The upper bit of the exponent is one, meaning
the number is normalized, or full precision.The exponent is 1043 minus the bias
of 1023, or 20.

This is the representation of the number 1.5 X 2^20 = 1572864:

IEEE Standard 754 Double Precision Storage Format (double):
63        62            52 51               32 31 0
+--------+----------------+-------------------+------------------------------+
| s 1bit | e[62:52] 11bit | f[51:32] 20bit    | f[31:0] 32bit                |
+--------+----------------+-------------------+------------------------------+
B0-------------->B1---------->B2----->B3----->B4----->B5----->B6----->B7----->
0         10000010011     1000000000000000000000000000000000000000000000000000

2-> there is the tabfudge like:

Union tabfudge
{
 double tf_d;
 int32 tf_i[2]; 
}

In dsp_perfrom:

Union tabfudge tf;

tf.tf_d = UNITBIT32;

3-> the phase is accumulated into tf_d plus the UNITBIT32

Double dphase = x_phase + UNITBIT32;

4-> byte 0 to byte 3 is stored as a separate variable as:

int normhipart = tf.tf_I[HIOFFSET]; //where HIOFFSET is used to find MSB

5-> in the actual dsp block, although the phase is accumulated into
tf.tf_d, bytes 0 to 3 of tf.tf_d are constantly forced to be a
constant by:

tf.tf_i[HIOFFSET] = normhipart;

6-> because of this, to get the fraction part out of the tf.tf_d, simply do:

tf.tf_d - UNITBIT32;

7-> mission accomplished!!!!!

*/

static t_int *sqosc_perform(t_int *w)
{
    t_sqosc         *x = (t_sqosc *)(w[1]);
    t_float         *in = (t_float *)(w[2]);
    t_float         *out = (t_float *)(w[3]);
    t_float         sample;
    int             n = (int)(w[4]);
    float           *tab = sqosc_table, *addr, f1, f2, frac;
    int             index;  
    double          dphase = x->x_phase + UNITBIT32;
    int             normhipart;
    union           tabfudge tf;
    float           conv = x->x_conv;
    double          lastin, findex, slewindex;
    static double   twothirds = 2.0/3.0;
    static double   onethird = 1.0/3.0;

    tf.tf_d = UNITBIT32; /* set the phase accumulator to (1.5 X 2^20) making it effectively fixed-point */
    normhipart = tf.tf_i[HIOFFSET]; /* save the sign, exponent, and integer part of a fixed accumulator */
    tf.tf_d = dphase; /* the current phase plus the "frame" */
    lastin = *in++; /* latest frequency */
    if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */
    if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth
    slewindex = x->x_slew*lastin;
    dphase += lastin * conv; /* new phase is old phase + (frequency * table period) */
    //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the current sample in the table */
    index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1);
    tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part of the phase */
    frac = tf.tf_d - UNITBIT32; /* extract the fractional part of the phase  */
    while (--n)
    {
        tf.tf_d = dphase;
        //f1 = addr[0]; /* first sample */
        if (index <= slewindex)
        { /* rising phase */
            if(x->x_pulse_ended)
            {/* set pw for this pulse once only*/
                if(x->x_pw < slewindex)x->x_dpw = slewindex;
                else if (x->x_pw > SQOSCTABSIZE-slewindex)x->x_dpw = SQOSCTABSIZE-slewindex;
                else x->x_dpw = x->x_pw;
                x->x_pulse_ended = 0;
            }
            //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE;
            //addr = tab + HALFSQOSCTABSIZE + (int)findex; 
            f1 = 1.0-2.0*(slewindex-index)/slewindex;// a ramp from -1 to +1 // addr[0];
            f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp
//            if (x->x_logcount < 1000)
//            {
//                fprintf(x->x_logfp, "rise index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac);
//                ++x->x_logcount;
//                if (x->x_logcount >= 1000) fclose(x->x_logfp);
//            }
        }
        else if (index < x->x_dpw) f1 = twothirds; /* risen */
        else if (index <= slewindex+x->x_dpw)
        { /* falling phase */
//            findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE;
//            addr = tab + (int)findex; 
            f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// a ramp from +1 to -1 // addr[0];
            f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp
            x->x_pulse_ended = 1;
//            if (x->x_logcount < 1000)
//            {
//                fprintf(x->x_logfp, "fall index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac);
//                ++x->x_logcount;
//                if (x->x_logcount >= 1000) fclose(x->x_logfp);
//            }
        }
        else
        { /* fallen */
            f1 = -twothirds;
        }
        lastin = *in++;
        if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */
        if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth
        slewindex = x->x_slew*lastin;
        dphase += lastin * conv; /* next phase */
        //f2 = addr[1]; /* second sample */
        if (index+1 <= slewindex)
        {
            f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1];
            f2 = f2 - pow(f2, 3.0)*onethird;
//            if (x->x_logcount < 1000)
//            {
//                fprintf(x->x_logfp, "rise index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac);
//                ++x->x_logcount;
//                if (x->x_logcount >= 1000) fclose(x->x_logfp);
//            }
        }
        else if (index+1 < x->x_dpw) f2 = twothirds;
        else if (index+1 <= slewindex+x->x_dpw)
        {
            f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1];
            f2 = f2 - pow(f2, 3.0)*onethird;
//            if (x->x_logcount < 1000)
//            {
//                fprintf(x->x_logfp, "fall index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac);
//                ++x->x_logcount;
//                if (x->x_logcount >= 1000) fclose(x->x_logfp);
//            }
        }
        else f2 = -twothirds;

        sample = f1 + frac * (f2 - f1); /* output first sample plus fraction of second sample (linear interpolation) */
        *out++ = sample;
//        if (x->x_logcount < 1000)
//        {
//            fprintf(x->x_logfp, "index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample);
//            ++x->x_logcount;
//            if (x->x_logcount >= 1000) fclose(x->x_logfp);
//        }
        //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the next sample */
        index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1);
        tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part */

        frac = tf.tf_d - UNITBIT32; /* get next fractional part */
    }
    //f1 = addr[0];
    if (index <= slewindex)
    {
        if(x->x_pulse_ended)
        {/* set pw for this pulse once only*/
            if(x->x_pw < slewindex)x->x_dpw = slewindex;
            else if (x->x_pw > SQOSCTABSIZE-slewindex)x->x_dpw = SQOSCTABSIZE-slewindex;
            else x->x_dpw = x->x_pw;
            x->x_pulse_ended = 0;
        }
        //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE;
        //addr = tab + HALFSQOSCTABSIZE + (int)findex; 
        f1 = 1.0-2.0*(slewindex-index)/slewindex;// addr[0];
        f1 = f1 - pow(f1, 3.0)*onethird;
//        if (x->x_logcount < 1000)
//        {
//            fprintf(x->x_logfp, "rise2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac);
//            ++x->x_logcount;
//            if (x->x_logcount >= 1000) fclose(x->x_logfp);
//        }
    }
    else if (index < x->x_dpw) f1 = twothirds; /* risen */
    else if (index <= slewindex+x->x_dpw)
    { /* falling phase */
//        findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE;
//        addr = tab + (int)findex; 
        f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// addr[0];
        f1 = f1 - pow(f1, 3.0)*onethird;
        x->x_pulse_ended = 1;
//        if (x->x_logcount < 1000)
//        {
//            fprintf(x->x_logfp, "fall2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac);
//            ++x->x_logcount;
///            if (x->x_logcount >= 1000) fclose(x->x_logfp);
//        }
    }
    else
    { /* fallen */
        f1 = -twothirds;
    }
    //f2 = addr[1]; /* second sample */
    if (index+1 <= slewindex)
    {
        f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1];
        f2 = f2 - pow(f2, 3.0)*onethird;
//        if (x->x_logcount < 1000)
//        {
//            fprintf(x->x_logfp, "rise2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac);
//            ++x->x_logcount;
//            if (x->x_logcount >= 1000) fclose(x->x_logfp);
//        }
    }
    else if (index+1 < x->x_dpw) f2 = twothirds;
    else if (index+1 <= slewindex+x->x_dpw)
    {
        f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1];
        f2 = f2 - pow(f2, 3.0)*onethird;
//        if (x->x_logcount < 1000)
//        {
//            fprintf(x->x_logfp, "fall2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac);
//            ++x->x_logcount;
//            if (x->x_logcount >= 1000) fclose(x->x_logfp);
//        }
    }
    else f2 = -twothirds;
    sample = f1 + frac * (f2 - f1); /* the final sample */
    *out++ = sample;
//    if (x->x_logcount < 1000)
//    {
//        fprintf(x->x_logfp, "*index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample);
//        ++x->x_logcount;
//        if (x->x_logcount >= 1000) fclose(x->x_logfp);
//    }

    tf.tf_d = UNITBIT32 * SQOSCTABSIZE; /* this just changes the exponent if the table size is a power of 2 */
    normhipart = tf.tf_i[HIOFFSET]; /* ...so we get more integer digits but fewer fractional ones */
    tf.tf_d = dphase + (UNITBIT32 * SQOSCTABSIZE - UNITBIT32); /* subtract one UNITBIT32 we added at the beginning */
    tf.tf_i[HIOFFSET] = normhipart; /* wrap any overflow to the table size */
    x->x_phase = tf.tf_d - UNITBIT32 * SQOSCTABSIZE; /* extract just the phase */
    return (w+5);
}
static void sqosc_dsp(t_sqosc *x, t_signal **sp)
{
//    static int once = 0;

    x->x_conv = SQOSCTABSIZE/sp[0]->s_sr;
/* conv = table period = (samples/cycle)/(samples/sec) = sec/cycle = 0.011610sec for 512/44100 */

//    if (once == 0)
//    {
//        ++once;
//        post ("x->x_slew = %f, x->x_bw = %f, sp[0]->s_sr = %f", x->x_slew, x->x_bw, sp[0]->s_sr);
//    }
    dsp_add(sqosc_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

static void sqosc_ft1(t_sqosc *x, t_float f)
{
    x->x_phase = SQOSCTABSIZE * f;
}

static void sqosc_pw(t_sqosc *x, t_float pw)
{
    if ((pw <= 0)||(pw >= 1)) return;
        //post("sqosc: pulse width must be greater than 0 and less than 1");// this is an annoying message...
    x->x_pw = pw * SQOSCTABSIZE;
}

void sqosc_tilde_setup(void)
{    
    sqosc_class = class_new(gensym("sqosc~"), (t_newmethod)sqosc_new, 0,
        sizeof(t_sqosc), 0, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
    CLASS_MAINSIGNALIN(sqosc_class, t_sqosc, x_f);/* x_f is used when no signal is input */
    class_addmethod(sqosc_class, (t_method)sqosc_dsp, gensym("dsp"), 0);
    class_addmethod(sqosc_class, (t_method)sqosc_ft1, gensym("ft1"), A_FLOAT, 0);
    class_addmethod(sqosc_class, (t_method)sqosc_pw, gensym("pw"), A_FLOAT, 0);

    sqosc_maketable(); /* make the same table as cos_table */
}


/* end of sqosc.c */

--- sqosc-help.pd DELETED ---

--- sqosc.c DELETED ---

--- NEW FILE: sqosc~-help.pd ---
#N canvas 166 14 572 824 12;
#X obj 149 229 dac~;
#X obj 257 179 tabwrite~ wave;
#X obj 15 319 table wave 512;
#X msg 257 149 bang;
#X text 297 148 graph;
#X floatatom 230 32 5 0 1 0 - - -;
#X msg 225 -2 0.001;
#X obj 7 48 osc~ 1;
#X obj 46 160 *~ 100;
#X floatatom 7 25 5 0 0 0 - - -;
#X floatatom 184 53 5 0 0 0 - - -;
#X floatatom 78 79 5 0 0 0 - - -;
#X obj 77 47 line;
#X msg 93 22 0 10000;
#X msg 81 -13 20000 10000;
#X obj 7 79 +~ 1;
#X msg 313 24 0.1;
#X floatatom 275 67 5 0 0 0 - - -;
#X obj 359 46 line;
#X msg 346 -8 0.01 10000;
#X msg 382 17 0.99 10000;
#X msg 296 -8 0.5;
#X obj 379 127 metro 100;
#X obj 379 96 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1
;
#X obj 184 30 mtof;
#X obj 184 -33 counter 127;
#X obj 184 -76 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 184 -57 metro 100;
#X floatatom 251 -78 5 0 0 0 - - -;
#X msg 250 -102 10000;
#X floatatom 364 -67 5 0 0 0 - - -;
#X obj 362 -149 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 361 -90 counter 2;
#X obj 403 -32 sel 1 2;
#X obj 362 -118 metro 10000;
#X text 18 255 creation arguments: frequency pulsewidth bandwidth;
#X text 17 274 inlets: frequency phase pulsewidth;
#X text 22 295 outlet: pulse;
#X obj 24 -91 random 1000;
#X obj 24 -65 * 0.001;
#X obj 24 -115 metro 100;
#X obj 24 -134 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X floatatom 91 -136 5 0 0 0 - - -;
#X msg 91 -161 100;
#X obj 163 96 sqosc~ 440 0.5 2000;
#X obj 146 -171 osc~ 1;
#X obj 147 -148 +~ 1;
#X obj 146 -125 *~ 100;
#X floatatom 211 -152 5 0 0 1 fm - -;
#X floatatom 146 -192 5 0 0 0 - - -;
#X obj 379 151 spigot;
#X obj 422 96 tgl 15 0 empty empty sync_graph 20 7 0 8 -262144 -1 -1
0 1;
#X msg 379 176 0;
#X obj 342 71 loadbang;
#X obj 164 72 +~;
#X floatatom 431 -162 5 0 0 0 - - -;
#X connect 3 0 1 0;
#X connect 5 0 44 1;
#X connect 6 0 5 0;
#X connect 7 0 15 0;
#X connect 9 0 7 0;
#X connect 10 0 54 1;
#X connect 11 0 8 1;
#X connect 12 0 11 0;
#X connect 13 0 12 0;
#X connect 14 0 12 0;
#X connect 15 0 8 0;
#X connect 16 0 17 0;
#X connect 17 0 44 2;
#X connect 18 0 17 0;
#X connect 19 0 18 0;
#X connect 20 0 18 0;
#X connect 21 0 17 0;
#X connect 22 0 1 0;
#X connect 22 0 50 0;
#X connect 23 0 22 0;
#X connect 24 0 10 0;
#X connect 25 0 24 0;
#X connect 26 0 27 0;
#X connect 27 0 25 0;
#X connect 28 0 27 1;
#X connect 29 0 28 0;
#X connect 30 0 33 0;
#X connect 31 0 34 0;
#X connect 32 0 30 0;
#X connect 33 0 21 0;
#X connect 33 1 16 0;
#X connect 34 0 32 0;
#X connect 38 0 39 0;
#X connect 39 0 17 0;
#X connect 40 0 38 0;
#X connect 41 0 40 0;
#X connect 42 0 40 1;
#X connect 43 0 42 0;
#X connect 44 0 1 0;
#X connect 44 0 0 1;
#X connect 44 0 0 0;
#X connect 45 0 46 0;
#X connect 46 0 47 0;
#X connect 47 0 54 0;
#X connect 48 0 47 1;
#X connect 49 0 45 0;
#X connect 50 0 52 0;
#X connect 51 0 50 1;
#X connect 52 0 5 0;
#X connect 53 0 23 0;
#X connect 53 0 3 0;
#X connect 53 0 48 0;
#X connect 54 0 44 0;
#X connect 55 0 34 1;





More information about the Pd-cvs mailing list