[PD-cvs] externals/bsaylor GPL.txt, NONE, 1.1 Makefile, NONE, 1.1 README.txt, NONE, 1.1 altivec-perform.inc.c, NONE, 1.1 noiseburst.wav, NONE, 1.1 partconv~.c, NONE, 1.1 partconv~.dsp, NONE, 1.1 partconv~.dsw, NONE, 1.1 partconv~.libs, NONE, 1.1 partconv~.vcproj, NONE, 1.1 pvoc~.c, NONE, 1.1 pvoc~.libs, NONE, 1.1 sse-conv.inc.c, NONE, 1.1

Hans-Christoph Steiner eighthave at users.sourceforge.net
Tue Feb 7 19:23:36 CET 2006


Update of /cvsroot/pure-data/externals/bsaylor
In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv3766

Added Files:
	GPL.txt Makefile README.txt altivec-perform.inc.c 
	noiseburst.wav partconv~.c partconv~.dsp partconv~.dsw 
	partconv~.libs partconv~.vcproj pvoc~.c pvoc~.libs 
	sse-conv.inc.c 
Log Message:
added Ben Saylor's pvoc~ and partconv~ from his sources so they can be added to Pd-extended

--- NEW FILE: GPL.txt ---
		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
                       59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS

	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA


Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Library General
Public License instead of this License.

--- NEW FILE: pvoc~.c ---
/* Copyright 2003 Benjamin R. Saylor <bensaylor at fastmail.fm>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <math.h>
#include <fftw3.h>
#include "m_pd.h"

// FIXME:
// set array when dsp is turned on
// get rid of shiftbuf, just save values that will be needed next before overwriting them
// cubic interp
// use float fftw?
// performance testing
// what if there are 2 transients less than fftsize apart?  second one might get smeared.
// compare sound with phaselockedvoc.pd
// detect transients
// peaks + noise
// other phase locking methods
// use floats?
// use in-place?
// if don't have an array, call setarray(x->arrayname)
// window size and fft size independent (what is gained by zero-padding?)
// error if parent blocksize is larger than hopsize
// slowly return window to true position after centering around a transient?
// use fewer fft arrays?

// DONE:
// use FFTW_MEASURE

static t_class *pvoc_class;

typedef struct _pvoc {
	t_object x_obj;
	t_symbol *arrayname;
	t_garray *arrayobj;
	t_float *array;
	int arraysize;
	double *window;
	int fftsize;
	int overlap;
	int hopsize;			// = fftsize / overlap
	int trans[256];			// sample indices of transients
	int ntrans;			// number of transients
	int wastrans;			// there was a transient in the left half of the window during the previous frame
	double phaselocking;
	fftw_plan fftplan;
	fftw_plan fft2plan;
	fftw_plan ifftplan;
	double *fftin;
	double *fft2in;
	double *ifftout;
	fftw_complex *fftout;
	fftw_complex *fft2out;
	fftw_complex *ifftin;
	fftw_complex *shiftbuf;
	double *outbuf;
	int outbufpos;
} t_pvoc;

// if there is a transient between samples a and b, return its position, else return -1
static inline int transient_between(t_pvoc *x, int a, int b)
{
	// linear search for now: FIXME
	int i;
	for (i = 0; i < x->ntrans; i++)
		if (a <= x->trans[i] && b >= x->trans[i])
			return x->trans[i];
	return -1;
}

#if 1
static inline double interpolate(t_pvoc *x, double t)
{
	// linear interpolation for now: FIXME
	if (t < 0 || t > (x->arraysize - 1))
		return 0.0;
	else {
		int x_1 = t;
		double y_1 = x->array[x_1];
		double y_2 = x->array[x_1 + 1];

		return (y_2 - y_1) * (t - x_1) + y_1;
	}
}
#else
static inline double interpolate(t_pvoc *x, double t)
{
	// FIXME check bounds (can't think now)
	int truncphase = (int) x->phase;
	double fr = x->phase - ((double) truncphase);
	double inm1 = x->ifftout[truncphase - 1];
	double in   = x->ifftout[truncphase + 0];
	double inp1 = x->ifftout[truncphase + 1];
	double inp2 = x->ifftout[truncphase + 2];

	// taken from swh-plugins-0.4.0/ladspa-util.h cube_interp, made to use doubles instead since doubles are what i'm using for some reason
	return in + 0.5 * fr * (inp1 - inm1 +
	 fr * (4.0 * inp1 + 2.0 * inm1 - 5.0 * in - inp2 +
	 fr * (3.0 * (in - inp1) - inm1 + inp2)));
}
#endif

static t_int *pvoc_perform(t_int *w)
{
	t_pvoc *x = (t_pvoc *)(w[1]);
	t_float *in1 = (t_float *)(w[2]);
	t_float *in2 = (t_float *)(w[3]);
	t_float *out = (t_float *)(w[4]);
	int n = (int)(w[5]);
	double t;
	double pitchshift;
	int transientpos;
	int desmear;
	double framestart;
	double frameend;
	int i;	// 0 to n -type iterator
	int j;	// start to end -type iterator
	int k;	// bin iterator
	double xlook;		// iterator for interpolated table lookup

	// if we are at the start of a new frame...
	if (x->outbufpos % x->hopsize == 0) {

		// don't desmear this frame by default
		desmear = 0;

		// sample the input signals (FIXME just sample these in the beginning..)
		t = in1[0];		// time position
		pitchshift = in2[0];	// pitch shift

		// set the frame boundaries with the desired time pos in the middle
		framestart = t - (pitchshift * x->fftsize / 2);
		frameend = framestart + pitchshift * x->fftsize;

		// prepare to de-smear transients
		transientpos = transient_between(x, (int) framestart, (int) frameend);
		if (transientpos != -1) {
			// there is a transient in this frame
#if 0
			if (transientpos > t) {
				// there is a transient in the right half of the window:
				// --> move the window left until the transient is outside it
				frameend = transientpos;
				framestart = frameend - x->fftsize;
				x->wastrans = 0;
			} else if ( ! x->wastrans) {
				// there is a transient in the left half of the window,
				// and there was no transient there during the previous frame:
				// --> center the window around the transient and remember to desmear this frame
				framestart = transientpos - (x->fftsize / 2);
				frameend = framestart + x->fftsize;
				desmear = 1;
				x->wastrans = 1;
			} else
				x->wastrans = 1;
#else
			// this simpler method turns out to sound better (timing sounds more accurate, no "frozen" sound preceding transients)
			if ( ! x->wastrans) {
				// there is a transient in the window,
				// and there wasn't during the previous frame:
				// --> center the window around the transient and remember to desmear this frame
				framestart = transientpos - (pitchshift * x->fftsize / 2);
				desmear = 1;
			}
			x->wastrans = 1;
#endif
		} else
			x->wastrans = 0;

		// interpolate-read the array from framestart to frameend into fftin, windowing it
		for (i = 0, xlook = framestart; i < x->fftsize; xlook += pitchshift, i++) {
			x->fftin[i] = interpolate(x, xlook) * x->window[i];
		}

		// hop forward and read the second frame into fft2in
		// FIXME merge the two loops?
		framestart += pitchshift * x->hopsize;
		for (i = 0, xlook = framestart; i < x->fftsize; xlook += pitchshift, i++) {
			x->fft2in[i] = interpolate(x, xlook) * x->window[i];
		}

		// do the ffts
		fftw_execute(x->fftplan);
		fftw_execute(x->fft2plan);

		if ( ! desmear) {
			// Miller Puckette's phase modification math (translation from 09.pvoc.pd and 10.phaselockedvoc.pd)

			double a, b, r, c, d;

			// propagate phase
			for (k = 0; k < (x->fftsize / 2 + 1); k++) {
				a = x->ifftin[k][0] * x->fftout[k][0] + x->ifftin[k][1] * x->fftout[k][1] + 0.00000000000000000001;
				b = x->ifftin[k][1] * x->fftout[k][0] - x->ifftin[k][0] * x->fftout[k][1];
				r = 1 / sqrt(a * a + b * b);
				c = a * r;
				d = b * r;
				x->shiftbuf[k][0] = c * x->fft2out[k][0] - d * x->fft2out[k][1];
				x->shiftbuf[k][1] = c * x->fft2out[k][1] + d * x->fft2out[k][0];
			}

			// don't phase-lock the first bin
			x->ifftin[0][0] = x->shiftbuf[0][0];
			x->ifftin[0][1] = x->shiftbuf[0][1];

			// phase-lock
			for (k = 1; k < (x->fftsize / 2); k++) {
				x->ifftin[k][0] = x->shiftbuf[k][0] - x->phaselocking * (x->shiftbuf[k - 1][0] + x->shiftbuf[k + 1][0]);
				x->ifftin[k][1] = x->shiftbuf[k][1] - x->phaselocking * (x->shiftbuf[k - 1][1] + x->shiftbuf[k + 1][1]);
			}

			// don't phase-lock the last bin
			x->ifftin[x->fftsize / 2][0] = x->shiftbuf[x->fftsize / 2][0];
			x->ifftin[x->fftsize / 2][1] = x->shiftbuf[x->fftsize / 2][1];

		} else {
			// this frame is to be de-smeared, which means don't modify the phases, just preserve the original phases
			for (k = 0; k < (x->fftsize / 2 + 1); k++) {
				x->ifftin[k][0] = x->fftout[k][0];
				x->ifftin[k][1] = x->fftout[k][1];
			}
		}

		// do the ifft
		fftw_execute(x->ifftplan);

		// add into output buffer, windowing and normalizing first (divide by blocksize)
		for (i = 0, j = x->outbufpos; i < x->fftsize; i++, j++) {
			x->outbuf[j % x->fftsize] += x->ifftout[i] / x->fftsize * x->window[i];
		}
	}

	// output one block of the output buffer
	for (i = 0, j = x->outbufpos; i < n; i++, j++) {
		out[i] = x->outbuf[j % x->fftsize];
		x->outbuf[j % x->fftsize] = 0;		// zero the part of the buffer that was just output
	}

	// move the output buffer pointer forward by one block
	x->outbufpos = (x->outbufpos + n) % x->fftsize;

	return (w+6);
}

static void pvoc_dsp(t_pvoc *x, t_signal **sp)
{
	    dsp_add(pvoc_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}

// adapted from jsarlo's windowing library
// Hanning
static void makewindow(double *w, int n)
{
	int i;
	double xshift =  n / 2.0;
	double x;
	for (i = 0; i < n; i++) {
		x = (i - xshift) / xshift;
		w[i] = 0.5 * (1 + cos(M_PI * x));
	}
}

static void setarray(t_pvoc *x, t_symbol *s)
{
	x->arrayname = s;
	if ( ! (x->arrayobj = (t_garray *)pd_findbyclass(x->arrayname, garray_class))) {
 		if (*x->arrayname->s_name) pd_error(x, "pvoc~: %s: no such array", x->arrayname->s_name);
		x->array = NULL;
		x->arraysize = 0;
	} else if ( ! garray_getfloatarray(x->arrayobj, &x->arraysize, &x->array)) {
 		error("%s: bad template", x->arrayname->s_name);
		x->array = NULL;
		x->arraysize = 0;
	} else {
		garray_usedindsp(x->arrayobj);
	}
}

static void locking(t_pvoc *x, t_floatarg f)
{
	x->phaselocking = f;
}

// takes a list of sample positions of transients to be de-smeared
static void transients(t_pvoc *x, t_symbol *s, int argc, t_atom *argv)
{
	int i;

	x->ntrans = argc;
	for (i = 0; i < x->ntrans; i++)
		x->trans[i] = atom_getfloatarg(i, argc, argv);
}

// for clarity (same as "transients" with no args)
static void notransients(t_pvoc *x)
{
	x->ntrans = 0;
}

static void *pvoc_new(t_symbol *s, int argc, t_atom *argv)
{
	t_pvoc *x = (t_pvoc *)pd_new(pvoc_class);
	int i;

	inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);	// pitch-shift inlet
	outlet_new(&x->x_obj, gensym("signal"));

	if (argc != 3) {
		post("argc = %d", argc);
		error("pvoc~: usage: [pvoc~ <arrayname> <fftsize> <overlap>]");
		return NULL;
	}

	x->fftsize = atom_getfloatarg(1, argc, argv);
	x->overlap = atom_getfloatarg(2, argc, argv);
	x->hopsize = x->fftsize / x->overlap;
	x->ntrans = 0;
	x->wastrans = 0;
	x->phaselocking = 0;

	// get the source array
	setarray(x, atom_getsymbol(argv));

	// set up output ring buffer
	x->outbuf = getbytes(sizeof(double) * x->fftsize);
	x->outbufpos = 0;
	for (i = 0; i < x->fftsize; i++)
		x->outbuf[i] = 0;

	// make table for window function
	x->window = getbytes(sizeof(double) * x->fftsize);
	makewindow(x->window, x->fftsize);

	// set up fftw stuff
	x->fftin = fftw_malloc(sizeof(double) * x->fftsize);
	x->fft2in = fftw_malloc(sizeof(double) * x->fftsize);
	x->ifftout = fftw_malloc(sizeof(double) * x->fftsize);
	x->fftout = fftw_malloc(sizeof(fftw_complex) * (x->fftsize / 2 + 1));
	x->fft2out = fftw_malloc(sizeof(fftw_complex) * (x->fftsize / 2 + 1));
	x->ifftin = fftw_malloc(sizeof(fftw_complex) * (x->fftsize / 2 + 1));
	x->shiftbuf = fftw_malloc(sizeof(fftw_complex) * (x->fftsize / 2 + 1));
	for (i = 0; i < (x->fftsize / 2 + 1); i++) {
		x->ifftin[i][0] = 0;	// need to start the phases from zero
		x->ifftin[i][1] = 0;
	}
	x->fftplan = fftw_plan_dft_r2c_1d(x->fftsize, x->fftin, x->fftout, FFTW_MEASURE);
	x->fft2plan = fftw_plan_dft_r2c_1d(x->fftsize, x->fft2in, x->fft2out, FFTW_MEASURE);
	x->ifftplan = fftw_plan_dft_c2r_1d(x->fftsize, x->ifftin, x->ifftout, FFTW_MEASURE | FFTW_PRESERVE_INPUT);
	
	return (x);
}

static void pvoc_free(t_pvoc *x)
{
	freebytes(x->outbuf, sizeof(double) * x->fftsize);
	freebytes(x->window, sizeof(double) * x->fftsize);
	fftw_free(x->fftin);
	fftw_free(x->fft2in);
	fftw_free(x->ifftout);
	fftw_free(x->fftout);
	fftw_free(x->fft2out);
	fftw_free(x->ifftin);
	fftw_free(x->shiftbuf);
	fftw_destroy_plan(x->fftplan);
	fftw_destroy_plan(x->fft2plan);
	fftw_destroy_plan(x->ifftplan);
}

void pvoc_tilde_setup(void)
{
	pvoc_class = class_new(gensym("pvoc~"), (t_newmethod)pvoc_new, (t_method)pvoc_free, sizeof(t_pvoc), 0, A_GIMME, 0);
	class_addmethod(pvoc_class, nullfn, gensym("signal"), 0);
	class_addmethod(pvoc_class, (t_method) pvoc_dsp, gensym("dsp"), 0);
	class_addmethod(pvoc_class, (t_method) setarray, gensym("setarray"), A_DEFSYMBOL, 0);
	class_addmethod(pvoc_class, (t_method) locking, gensym("locking"), A_DEFFLOAT, 0);
	class_addmethod(pvoc_class, (t_method) transients, gensym("transients"), A_GIMME, 0);
	class_addmethod(pvoc_class, (t_method) notransients, gensym("notransients"), 0);
}

--- NEW FILE: partconv~.libs ---
-lfftw3

--- NEW FILE: Makefile ---
TARGET=bsaylor

default: 
	make -C ../ $(TARGET)

install:
	make -C ../ $(TARGET)_install

clean:
	make -C ../ $(TARGET)_clean

--- NEW FILE: pvoc~.libs ---
-lfftw3

--- NEW FILE: sse-conv.inc.c ---
// Ben Saylor 2005-08-10
// attempt at an SSE version of the convolution loop.
// Results sound weird, and CPU usage is about the same. :(

		cursumbuf_fd	= (v4sf *) x->sumbufs[(x->sumbuf->index + p) % x->nsumbufs].fd;
		input_fd	= (v4sf *) x->input_fd;
		irpart_fd	= (v4sf *) x->irpart_fd[p];
		nvecs = x->paddedsize/4;

		for (v1=0, v2=1; v2 < nvecs; v1+=2, v2+=2) {
			// v1 is the index of the first 4-float vector (v4sf) to process (v2 is the second)
			// input_fd, etc. are v4sf pointers.
			// pull in 4 bins (8 floats) (2 v4sfs) at a time.
			
			// (a + bi) * (c + di) = (ac - bd) + (ad + bc)i

			asm volatile (	
					// load inputs
					"movaps %[in1], %%xmm0\n\t"
					"movaps %[in2], %%xmm6\n\t"
					"movaps %[ir1], %%xmm2\n\t"
					"movaps %[ir2], %%xmm7\n\t"
					"movaps %%xmm0, %%xmm1\n\t"
					"movaps %%xmm2, %%xmm3\n\t"
					// xmm0 = xmm1 = [a1 b1 a2 b2]
					// xmm6 =        [a3 b3 a4 b4]
					// xmm2 = xmm3 = [c1 d1 c2 d2]
					// xmm7 =        [c3 d3 c4 d4]

					// de-interleave real and imaginary parts
					"shufps $0x88, %%xmm6, %%xmm0\n\t"	// xmm0 = [a1 a2 a3 a4]
					"shufps $0xDD, %%xmm6, %%xmm1\n\t"	// xmm1 = [b1 b2 b3 b4]
					"shufps $0x88, %%xmm7, %%xmm2\n\t"	// xmm2 = [c1 c2 c3 c4]
					"shufps $0xDD, %%xmm7, %%xmm3\n\t"	// xmm3 = [d1 d2 d3 d4]

					// load output (early, maybe it will help)
					"movaps %[out1], %%xmm6\n\t"
					"movaps %[out2], %%xmm7\n\t"

					// compute the real part of the complex product
					// (work on copies of xmm0 and xmm1, because we need to keep them)
					"movaps %%xmm0, %%xmm4\n\t"		// xmm4 = [a1 a2 a3 a4]
					"mulps %%xmm2, %%xmm4\n\t"		// xmm4 = [a1c1 a2c2 a3c3 a4c4]
					"movaps %%xmm1, %%xmm5\n\t"		// xmm5 = [b1 b2 b3 b4]
					"mulps %%xmm3, %%xmm5\n\t"		// xmm5 = [b1d1 b2d2 b3d3 b4d4]
					"subps %%xmm5, %%xmm4\n\t"		// xmm4 = (ac - bd) [r1 r2 r3 r4]

					// compute the imaginary part of the complex product
					"mulps %%xmm3, %%xmm0\n\t"		// xmm0 = [a1d1 a2d2 a3d3 a4d4]
					"mulps %%xmm2, %%xmm1\n\t"		// xmm1 = [b1c1 b2c2 b3c3 b4c4]
					"addps %%xmm1, %%xmm0\n\t"		// xmm0 = (ad + bc) [i1 i2 i3 i4]

					// re-interleave
					"movaps %%xmm4, %%xmm5\n\t"		// xmm5 = [r1 r2 r3 r4]
					"unpcklps %%xmm0, %%xmm4\n\t"		// xmm4 = [r1 i1 r2 i2]
					"unpckhps %%xmm5, %%xmm0\n\t"		// xmm0 = [r3 i3 r4 i4]

					// add into sumbuf
					"addps %%xmm4, %%xmm6\n\t"
					"addps %%xmm0, %%xmm7\n\t"
					"movaps %%xmm6, %[out1]\n\t"
					"movaps %%xmm7, %[out2]"

					// output/input operands
					: [out1] "+m" (cursumbuf_fd[v1]),
					  [out2] "+m" (cursumbuf_fd[v2])

					// input operands
					: [in1] "m" (input_fd[v1]),
					  [in2] "m" (input_fd[v2]),
					  [ir1] "m" (irpart_fd[v1]),
					  [ir2] "m" (irpart_fd[v2])

					// clobbered registers
					: "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7"
			    );
		}

--- NEW FILE: noiseburst.wav ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: altivec-perform.inc.c ---
//altivec version by Chris Clepper
//
static t_int *partconv_perform(t_int *w)
{
    t_partconv *x = (t_partconv *)(w[1]);
    t_float *in = (t_float *)(w[2]);
    t_float *out = (t_float *)(w[3]);
    int n = (int)(w[4]);
    int i;
    int j;
    int k;	// bin
    int p;	// partition
    int endpart;
    fftwf_complex *cursumbuf_fd;
    float *sumbuf1ptr;
    float *sumbuf2ptr;

    union {
        unsigned char c[16];
        vector unsigned char v;
    }permfill;

    union {
        float f[4];
        vector float v;
    }floatfill;

    vector float *load_input, *load_irpart;
    vector float store_multbuf1,store_multbuf2;
    vector float vinput_fd0, vinput_fd4; //input vectors
    vector float virpart_fd0, virpart_fd4;  //ir partition vectors
    vector float permtemp1357, permtemp0246;
    vector float vzero;// vscale;
    vector unsigned char input_0022, input_1133, perm_0246, perm_1357, perm_0123,perm_4567;
    vector float vtemp1, vtemp2, vtemp3, vtemp4, vtemp5, vtemp6, vtemp7, vtemp8;

    floatfill.f[0] = 0.f;
    floatfill.f[1] = 0.f;
    floatfill.f[2] = 0.f;
    floatfill.f[3] = 0.f;
    vzero = floatfill.v;

    //store_multbuf = vzero;

    floatfill.f[0] = x->scale;
    floatfill.f[1] = x->scale;
    floatfill.f[2] = x->scale;
    floatfill.f[3] = x->scale;
    //vscale = floatfill.v;

    //fill the permute buffer for the first input_fd multiply
    permfill.c[0] = 0; permfill.c[1] = 1; permfill.c[2] = 2; permfill.c[3] = 3; //first float
    permfill.c[4] = 0; permfill.c[5] = 1; permfill.c[6] = 2; permfill.c[7] = 3; //second float
    permfill.c[8] = 8; permfill.c[9] = 9; permfill.c[10] = 10; permfill.c[11] = 11; //third float
    permfill.c[12] = 8; permfill.c[13] = 9; permfill.c[14] = 10; permfill.c[15] = 11; //fourth float

    input_0022 = permfill.v;

    permfill.c[0] = 4; permfill.c[1] = 5; permfill.c[2] = 6; permfill.c[3] = 7; //first float
    permfill.c[4] = 4; permfill.c[5] = 5; permfill.c[6] = 6; permfill.c[7] = 7; //second float
    permfill.c[8] = 12; permfill.c[9] = 13; permfill.c[10] = 14; permfill.c[11] = 15; //third float
    permfill.c[12] = 12; permfill.c[13] = 13; permfill.c[14] = 14; permfill.c[15] = 15; //fourth float

    input_1133 = permfill.v;

    //perm_0246
    //0,1,2,3,        8,9,10,11,          16,17,18,19,          24,25,26,27
    permfill.c[0] = 0; permfill.c[1] = 1; permfill.c[2] = 2; permfill.c[3] = 3; //first float
    permfill.c[4] = 8; permfill.c[5] = 9; permfill.c[6] = 10; permfill.c[7] = 11; //second float
    permfill.c[8] = 16; permfill.c[9] = 17; permfill.c[10] = 18; permfill.c[11] = 19; //third float
    permfill.c[12] = 24; permfill.c[13] = 25; permfill.c[14] = 26; permfill.c[15] = 27; //fourth float

    perm_0246 = permfill.v;

    // perm_1357
    //         4,5,6,7,         12,13,14,15,           20,21,22,23,         28,29,30,31
    permfill.c[0] = 4; permfill.c[1] = 5; permfill.c[2] = 6; permfill.c[3] = 7; //first float
    permfill.c[4] = 12; permfill.c[5] = 13; permfill.c[6] = 14; permfill.c[7] = 15; //second float
    permfill.c[8] = 20; permfill.c[9] = 21; permfill.c[10] = 22; permfill.c[11] = 23; //third float
    permfill.c[12] = 28; permfill.c[13] = 29; permfill.c[14] = 30; permfill.c[15] = 31; //fourth float

    perm_1357 = permfill.v;

    // perm_0123  from [0,2,4,6] and [1,3,5,7]
    //         0,1,2,3	16,17,18,19	4,5,6,7	20,21,22,23
    permfill.c[0] = 0; permfill.c[1] = 1; permfill.c[2] = 2; permfill.c[3] = 3; //first float
    permfill.c[4] = 16; permfill.c[5] = 17; permfill.c[6] = 18; permfill.c[7] = 19; //second float
    permfill.c[8] = 4; permfill.c[9] = 5; permfill.c[10] = 6; permfill.c[11] = 7; //third float
    permfill.c[12] = 20; permfill.c[13] = 21; permfill.c[14] = 22; permfill.c[15] = 23; //fourth float

    perm_0123 = permfill.v;

    // perm_4567  from [0,2,4,6] and [1,3,5,7]
    //        8.9.10.11      24,25,26,27              12,13,14,15         28,29,30,31
    permfill.c[0] = 8; permfill.c[1] = 9; permfill.c[2] = 10; permfill.c[3] = 11; //first float
    permfill.c[4] = 24; permfill.c[5] = 25; permfill.c[6] = 26; permfill.c[7] = 27; //second float
    permfill.c[8] = 12; permfill.c[9] = 13; permfill.c[10] = 14; permfill.c[11] = 15; //third float
    permfill.c[12] = 28; permfill.c[13] = 29; permfill.c[14] = 30; permfill.c[15] = 31; //fourth float

    // perm_4567  from [0,2,4,6] and [1,3,5,7]
    //        8.9.10.11      24,25,26,27              12,13,14,15         28,29,30,31
    permfill.c[0] = 8; permfill.c[1] = 9; permfill.c[2] = 10; permfill.c[3] = 11; //first float
    permfill.c[4] = 24; permfill.c[5] = 25; permfill.c[6] = 26; permfill.c[7] = 27; //second float
    permfill.c[8] = 12; permfill.c[9] = 13; permfill.c[10] = 14; permfill.c[11] = 15; //third float
    permfill.c[12] = 28; permfill.c[13] = 29; permfill.c[14] = 30; permfill.c[15] = 31; //fourth float

    perm_4567 = permfill.v;
    

    memcpy(&(x->inbuf[x->inbufpos]), in, n*sizeof(float));  // gather a block of input into input buffer
    x->inbufpos += n;
    if (x->inbufpos >= x->partsize) {
        // input buffer is full, so we begin a new cycle

        if (x->pd_blocksize != n) {
            // the patch's blocksize has change since we last dealt the work
            x->pd_blocksize = n;
            partconv_deal_work(x);
        }

        x->inbufpos = 0;
        x->curcall = 0;
        x->curpart = 0;
        memcpy(x->input_td, x->inbuf, x->partsize * sizeof(float));  // copy 'gathering' input buffer into 'transform' buffer
        memset(&(x->input_td[x->partsize]), 0, (x->paddedsize - x->partsize) * sizeof(float));  // pad

        fftwf_execute(x->input_plan);  // transform the input

        // everything has been read out of prev sumbuf, so clear it
        memset(x->sumbuf->prev->td, 0,  x->paddedsize * sizeof(float));

        // advance sumbuf pointers
        x->sumbuf = x->sumbuf->next;
        x->sumbuf->readpos = 0;
        x->sumbuf->prev->readpos = x->partsize;
    }

    // convolve this call's portion of partitions
    endpart = x->curpart + x->parts_per_call[x->curcall];
    if (endpart > x->nparts)  // FIXME does this ever happen?
        endpart = x->nparts;
    for (p = x->curpart; p < endpart; p++) {
        //printf("convolving with partition %d\n", p);
        //
        // multiply the input block by the partition, accumulating the result in the appropriate sumbuf
        //

        // FIXME do this in a circular list-type fashion so we don't need "index"
        cursumbuf_fd =  x->sumbufs[(x->sumbuf->index + p) % x->nsumbufs].fd;

        for (k = 0; k < x->nbins; k+=4) {


            
            
            load_input = (vector float *)&x->input_fd[k][0];
            vinput_fd0 = vec_ld(0, (vector float *) load_input);

            vtemp1 = vec_perm(load_input[0],vzero,input_0022);

            load_input = (vector float *)&x->input_fd[k][4];
            //load input_fd[k][4]
            //vector will have input_fd[4,5,6,7]
            vinput_fd4 = vec_ld(0, (vector float *) &x->input_fd[k][4]);

            vtemp3 = vec_perm(load_input[0],vzero,input_0022);

            //vec_ld irpart[p][k][0]
            //vector will have irpart_fd[0,1,2,3]

            load_irpart = (vector float *) &x->irpart_fd[p][k][0];

            virpart_fd0 = vec_ld(0,&x->irpart_fd[p][k][0]);
            vtemp1 = vec_madd(vtemp1,load_irpart[0],vzero);

            load_irpart = (vector float *) &x->irpart_fd[p][k][4];
            virpart_fd4 = vec_ld(0,&x->irpart_fd[p][k][4]);
            vtemp3 = vec_madd(vtemp3,load_irpart[0],vzero);


            store_multbuf1 = vec_ld(0,&cursumbuf_fd[k][0]);

            store_multbuf2 = vec_ld(0,&cursumbuf_fd[k][4]);


            //vec_perm to line up the elements
            // irpart is fine
            // make vector of input_fd[0] [2] and [4] [6]
            //make vector of input_fd[1] [3] and [5] [7]
            //
            // permute only works on bytes so the first float is bytes 0,1,2,3 the second is 4,5,6,7 etc
            //
            // 0,1,2,3,        8,9,10,11,          16,17,18,19,          24,25,26,27
            //
            //         4,5,6,7,         12,13,14,15,           20,21,22,23,         28,29,30,31


            //vec_perm temp1 and temp3 into [0,2,4,6]
            permtemp0246 = vec_perm(vtemp1,vtemp3,perm_0246);

            //and [1,3,5,7]
            permtemp1357 = vec_perm(vtemp1,vtemp3,perm_1357);

            //vinput_fd[1,3,5,7]
            vtemp2 = vec_perm(vinput_fd0,vinput_fd4,perm_1357);

            //irpart[1,3,5,7]
            vtemp4 = vec_perm(virpart_fd0,virpart_fd4,perm_1357);

            //irpart[0,2,4,6]
            vtemp5 = vec_perm(virpart_fd0,virpart_fd4,perm_0246);

            //vec_nmsub  input_fd[1,3,5,7]  irpart[1,3,5,7] temp[0,2,4,6]
            vtemp6 = vec_nmsub(vtemp2,vtemp4,permtemp0246);

            //vec_madd  input_fd[1,3,5,7] irpart[0,2,4,6] temp[1,3,5,7]
            vtemp7 = vec_madd(vtemp2,vtemp5,permtemp1357);


            

            //vec_madd  all by scale - this is now done after the loop
          //  vtemp6 = vec_madd(vtemp6,vscale,vzero);

           // vtemp7 = vec_madd(vtemp7,vscale,vzero);


            //vec_perm data back into place - tricky!

            //vec_perm nmsub_result[0,2,4,6] madd_result [1,3,5,7]
            // results will be [0,1,2,3] [4,5,6,7]
            vtemp1 = vec_perm(vtemp6,vtemp7,perm_0123);

            vtemp2 = vec_perm(vtemp6,vtemp7,perm_4567);


            //vec_st
            
            store_multbuf1 = vec_add(store_multbuf1,vtemp1);
            store_multbuf2 = vec_add(store_multbuf2,vtemp2);

            vec_st(store_multbuf1,0,&cursumbuf_fd[k][0]);
            
            vec_st(store_multbuf2,0,&cursumbuf_fd[k][4]);
            
            
            /*
            cursumbuf_fd[k][0]
            +=
            (  x->input_fd[k][0] * x->irpart_fd[p][k][0]
               - x->input_fd[k][1] * x->irpart_fd[p][k][1]);

            cursumbuf_fd[k][1]
                +=
                (  x->input_fd[k][0] * x->irpart_fd[p][k][1]
                   + x->input_fd[k][1] * x->irpart_fd[p][k][0]);*/
        }
    }
    x->curpart = p;

    // The convolution of the fresh block of input with the first partition of the IR
    // is the last thing that gets summed into the current sumbuf before it gets IFFTed and starts being output.
    // This happens during the first call of every cycle.
    if (x->curcall == 0) {
        // current sumbuf has been filled, so transform it (TD to FD).
        // Output loop will begin to read it and sum it with the last one
        fftwf_execute(x->sumbuf->plan);
    }

    // we're summing and outputting the first half of the most recently IFFTed sumbuf
    // and the second half of the previous one
    sumbuf1ptr = &(x->sumbuf->td[x->sumbuf->readpos]);
    sumbuf2ptr = &(x->sumbuf->prev->td[x->sumbuf->prev->readpos]);
    for (i = 0; i < n; i++) {
        *(out++) = (*(sumbuf1ptr++) + *(sumbuf2ptr++)) * x->scale;
    }
    x->sumbuf->readpos += n;
    x->sumbuf->prev->readpos += n;

    x->curcall++;

    return (w+5);
}

--- NEW FILE: partconv~.c ---
/* Copyright 2003-2005 Benjamin R. Saylor <bensaylor at fastmail.fm>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

// Thu Feb 17 22:29:27 CST 2005 - Changed outbuf loops to use comparison instead of modulo (suggested by c. clepper) - faster
// Sat Jul 30 19:59:08 AKDT 2005 - Completed modification for re-blocking and dividing up the work between calls.
// 					This has eliminated dropouts due to lots of work on large block boundaries.
// Fri Aug  5 10:46:33 AKDT 2005 - accumulate in the frequency domain, so only 1 IFFT is needed per input block,
// 					rather than <nparts> IFFTs.  Big performance boost.
// Fri Aug  5 20:27:05 AKDT 2005 - should work properly with arbitrary (2^n) blocksize <= partsize
// Fri Aug 12 00:32:29 AKDT 2005 - added altivec code by Chris Clepper

// TODO
// SSE version
// multichannel (multiple IRs)?  probably wouldn't gain much from this
// divide work more evenly? (0, 15, 7, 23, 3, 11, 19, 27, ...)
// someday, an SSE3 version (supposed to make complex math fast)

#include <math.h>
#include <string.h>
#include <fftw3.h>
#include "m_pd.h"

#define MAXPARTS 256	// max number of partitions

#ifdef USE_SSE
typedef float v4sf __attribute__ ((vector_size (16)));
#endif

static t_class *partconv_class;

struct sumbuffer {
	int index;
	fftwf_complex *fd;
	float *td;
	fftwf_plan plan;
	int readpos;
	struct sumbuffer *next, *prev;
};

typedef struct _partconv {
	t_object x_obj;
	t_symbol *arrayname;
	int partsize;
	int fftsize;
	float scale;
	int paddedsize;
	int nbins;
	int nparts;
	int ir_prepared;
	int pd_blocksize;

	// partitions of impulse response
	fftwf_plan irpart_plan;
	float *irpart_td[MAXPARTS];
	fftwf_complex *irpart_fd[MAXPARTS];

	// input
	fftwf_plan input_plan;
	float *inbuf;
	int inbufpos;
	float *input_td;
	fftwf_complex *input_fd;

	// circular array/list of buffers for accumulating results of convolution
	struct sumbuffer sumbufs[MAXPARTS+2];
	int nsumbufs;  // number of sumbufs
	struct sumbuffer *sumbuf;  // the current sumbuf corresponding to the first partition of the IR

	// dividing up the work between calls to perform()
	int parts_per_call[MAXPARTS];	// parts_per_call[c] is the number of partitions to convolve during perform() call c
	int curcall;			// current call, counted from the beginning of the current cycle (input buffer full)
	int curpart;			// current partition to convolve
} t_partconv;

// Determine how to divide the work as evenly as possible between calls to perform().
static void partconv_deal_work(t_partconv *x)
{
	int calls_per_cycle;
	int parts_to_distribute;
	int i;

	// Like dealing cards.
	// One cycle is defined as the time it takes to fill the input buffer (whose size is the user-given partition size)
	calls_per_cycle = x->partsize / x->pd_blocksize;
	for (i = 0; i < calls_per_cycle; i++) {
		x->parts_per_call[i] = 0;
	}
	i = 0;
	parts_to_distribute = x->nparts;
	while (parts_to_distribute) {
		x->parts_per_call[i]++;
		parts_to_distribute--;
		i = (i + 1) % calls_per_cycle;
	}
	/*
	for (i = 0; i < calls_per_cycle; i++) {
		printf("parts_per_call[%d] = %d\n", i, x->parts_per_call[i]);
	}
	*/
}

#ifdef __VEC__
#include "altivec-perform.inc.c"
#else

static t_int *partconv_perform(t_int *w)
{
	t_partconv *x = (t_partconv *)(w[1]);
	t_float *in = (t_float *)(w[2]);
	t_float *out = (t_float *)(w[3]);
	int n = (int)(w[4]);
	int i;
	int j;
	int k;	// bin
	int p;	// partition
	int endpart;

#ifdef USE_SSE
	int v1;
	int v2;
	int nvecs;
	v4sf *cursumbuf_fd;
	v4sf *input_fd;
	v4sf *irpart_fd;
#else
	fftwf_complex *cursumbuf_fd;
	fftwf_complex *input_fd;
	fftwf_complex *irpart_fd;
#endif

	float *sumbuf1ptr;
	float *sumbuf2ptr;

	memcpy(&(x->inbuf[x->inbufpos]), in, n*sizeof(float));  // gather a block of input into input buffer
	x->inbufpos += n;
	if (x->inbufpos >= x->partsize) {
		// input buffer is full, so we begin a new cycle
		
		if (x->pd_blocksize != n) {
			// the patch's blocksize has change since we last dealt the work
			x->pd_blocksize = n;
			partconv_deal_work(x);
		}
		
		x->inbufpos = 0;
		x->curcall = 0;
		x->curpart = 0;
		memcpy(x->input_td, x->inbuf, x->partsize * sizeof(float));  // copy 'gathering' input buffer into 'transform' buffer
		memset(&(x->input_td[x->partsize]), 0, (x->paddedsize - x->partsize) * sizeof(float));  // pad

		fftwf_execute(x->input_plan);  // transform the input

		// everything has been read out of prev sumbuf, so clear it
		memset(x->sumbuf->prev->td, 0,  x->paddedsize * sizeof(float));

		// advance sumbuf pointers
		x->sumbuf = x->sumbuf->next;
		x->sumbuf->readpos = 0;
		x->sumbuf->prev->readpos = x->partsize;
	}

	// convolve this call's portion of partitions
	endpart = x->curpart + x->parts_per_call[x->curcall];
	if (endpart > x->nparts)  // FIXME does this ever happen?
		endpart = x->nparts;
	for (p = x->curpart; p < endpart; p++) {
		// multiply the input block by the partition, accumulating the result in the appropriate sumbuf
#ifdef USE_SSE
#include "sse-conv.inc.c"
#else
		cursumbuf_fd = x->sumbufs[(x->sumbuf->index + p) % x->nsumbufs].fd;
		input_fd = x->input_fd;
		irpart_fd = x->irpart_fd[p];

		for (k = 0; k < x->nbins; k++) {

			cursumbuf_fd[k][0]
				+=
				(  input_fd[k][0] * irpart_fd[k][0]
				 - input_fd[k][1] * irpart_fd[k][1]);

			cursumbuf_fd[k][1]
				+=
				(  input_fd[k][0] * irpart_fd[k][1]
				 + input_fd[k][1] * irpart_fd[k][0]);
		}
#endif
	}
	x->curpart = p;

	// The convolution of the fresh block of input with the first partition of the IR
	// is the last thing that gets summed into the current sumbuf before it gets IFFTed and starts being output.
	// This happens during the first call of every cycle.
	if (x->curcall == 0) {
		// current sumbuf has been filled, so transform it
		// Output loop will begin to read it and sum it with the last one
		fftwf_execute(x->sumbuf->plan);
	}

	// we're summing and outputting the first half of the most recently IFFTed sumbuf
	// and the second half of the previous one
	sumbuf1ptr = &(x->sumbuf->td[x->sumbuf->readpos]);
	sumbuf2ptr = &(x->sumbuf->prev->td[x->sumbuf->prev->readpos]);
	for (i = 0; i < n; i++) {
		out[i] = (sumbuf1ptr[i] + sumbuf2ptr[i]) * x->scale;
	}
	x->sumbuf->readpos += n;
	x->sumbuf->prev->readpos += n;

	x->curcall++;

	return (w+5);
}

#endif // __VEC__

static void partconv_free(t_partconv *x)
{
	int i;

	fftwf_free(x->inbuf);
	for (i = 0; i < x->nparts; i++)
		fftwf_free(x->irpart_td[i]);
	fftwf_free(x->input_td);
	fftwf_destroy_plan(x->input_plan);
	for (i  = 0; i < x->nsumbufs; i++) {
		fftwf_free(x->sumbufs[i].fd);
		fftwf_destroy_plan(x->sumbufs[i].plan);
	}
}

static void partconv_set(t_partconv *x, t_symbol *s)
{
	int i;
	int j;
	t_garray *arrayobj;
	t_float *array;
	int arraysize;
	int arraypos;

	// get the array from pd
	x->arrayname = s;
	if ( ! (arrayobj = (t_garray *)pd_findbyclass(x->arrayname, garray_class))) {
		if (*x->arrayname->s_name) {
			pd_error(x, "partconv~: %s: no such array", x->arrayname->s_name);
			return;
		}
	} else if ( ! garray_getfloatarray(arrayobj, &arraysize, &array)) {
		pd_error(x, "%s: bad template", x->arrayname->s_name);
		return;
	}

	// if the IR has already been prepared, free everything first
	if (x->ir_prepared == 1) {
		partconv_free(x);
	}

	// caculate number of partitions
	x->nparts = arraysize / x->partsize;
	if (arraysize % x->partsize != 0)
		x->nparts++;
	if (x->nparts > MAXPARTS)
		x->nparts = MAXPARTS;

	// allocate, fill, pad, and transform each IR partition
	for (arraypos = 0, i = 0; i < x->nparts; i++) {
		x->irpart_td[i] = fftwf_malloc(sizeof(float) * x->paddedsize);
		x->irpart_fd[i] = (fftwf_complex *) x->irpart_td[i];
		x->irpart_plan = fftwf_plan_dft_r2c_1d(x->fftsize, x->irpart_td[i], x->irpart_fd[i], FFTW_MEASURE);
		for (j = 0; j < x->partsize && arraypos < arraysize; j++, arraypos++) {
			x->irpart_td[i][j] = array[arraypos];
		}
		for ( ; j < x->paddedsize; j++) {
			x->irpart_td[i][j] = 0;
		}
		fftwf_execute(x->irpart_plan);
		fftwf_destroy_plan(x->irpart_plan);
		// now, x->irpart[i] contains the DFT of the ith partition of the impulse response.
	}

	x->inbuf = fftwf_malloc(sizeof(float) * x->partsize);
	x->inbufpos = 0;
	
	// allocate buffer for DFT of padded input
	x->input_td = fftwf_malloc(sizeof(float) * x->paddedsize);	// float array into which input block is copied and padded
	x->input_fd = (fftwf_complex *) x->input_td;			// fftwf_complex pointer to the same array to facilitate in-place fft
	x->input_plan =  fftwf_plan_dft_r2c_1d(x->fftsize, x->input_td, x->input_fd, FFTW_MEASURE);

	// set up circular list/array of buffers for accumulating results of convolution
	x->nsumbufs = x->nparts + 2;
	x->sumbuf = &(x->sumbufs[0]);
	for (i  = 0; i < x->nsumbufs; i++) {
		x->sumbufs[i].index = i;
		x->sumbufs[i].fd = fftwf_malloc(sizeof(float) * x->paddedsize);
		memset(x->sumbufs[i].fd, 0, sizeof(float) * x->paddedsize);
		x->sumbufs[i].td = (float *) x->sumbufs[i].fd;
		x->sumbufs[i].plan = fftwf_plan_dft_c2r_1d(x->fftsize, x->sumbufs[i].fd, x->sumbufs[i].td, FFTW_MEASURE);
		x->sumbufs[i].readpos = 0;
	}
	x->sumbufs[0].next = &(x->sumbufs[1]);
	x->sumbufs[0].prev = &(x->sumbufs[x->nsumbufs - 1]);
	for (i = 1; i < x->nsumbufs; i++) {
		x->sumbufs[i].next = &(x->sumbufs[(i + 1) % x->nsumbufs]);
		x->sumbufs[i].prev = &(x->sumbufs[i - 1]);
	}

	partconv_deal_work(x);
	x->curcall = 0;
	x->curpart = 0;

	post("partconv~: using %s in %d partitions with FFT-size %d", x->arrayname->s_name, x->nparts, x->fftsize);
	x->ir_prepared = 1;
}

static void partconv_dsp(t_partconv *x, t_signal **sp)
{
	// if the ir array has not been prepared, prepare it
	if (x->ir_prepared == 0) {
		partconv_set(x, x->arrayname);
	}

	dsp_add(partconv_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

static void *partconv_new(t_symbol *s, int argc, t_atom *argv)
{
	t_partconv *x = (t_partconv *)pd_new(partconv_class);

	outlet_new(&x->x_obj, gensym("signal"));

	if (argc != 2) {
		post("argc = %d", argc);
		error("partconv~: usage: [partconv~ <arrayname> <partsize>]\n\t- partition size must be a power of 2 >= blocksize");
		return NULL;
	}

	x->arrayname = atom_getsymbol(argv);
	x->partsize = atom_getfloatarg(1, argc, argv);
	if (x->partsize <= 0 || x->partsize != (1 << ilog2(x->partsize)))
	{
		error("partconv~: partition size not a power of 2");
		return NULL;
	}
	x->fftsize = 2 * x->partsize;
	x->scale = 1 / ((float) x->fftsize);

	// need 2*(n/2+1) float array for in-place transform, where n is fftsize.
#ifdef USE_SSE
	// for sse, make it a multiple of 8, because we pull in 4 bins at a time and don't want to get a segfault
	x->paddedsize = 2 * (x->fftsize / 2 + 4);
#else
	x->paddedsize = 2 * (x->fftsize / 2 + 1);
#endif
	x->nbins = x->fftsize / 2 + 1;
	x->ir_prepared = 0;
	x->pd_blocksize = sys_getblksize();

	return (x);
}

void partconv_tilde_setup(void)
{
	partconv_class = class_new(gensym("partconv~"), (t_newmethod)partconv_new,
			(t_method)partconv_free, sizeof(t_partconv), 0, A_GIMME, 0);
	class_addmethod(partconv_class, nullfn, gensym("signal"), 0);
	class_addmethod(partconv_class, (t_method) partconv_dsp, gensym("dsp"), 0);
	class_addmethod(partconv_class, (t_method) partconv_set, gensym("set"), A_DEFSYMBOL, 0);
}

--- NEW FILE: partconv~.vcproj ---
<?xml version="1.0" encoding = "Windows-1252"?>
<VisualStudioProject
	ProjectType="Visual C++"
	Version="7.00"
	Name="partconv~"
	SccProjectName=""
	SccLocalPath="">
	<Platforms>
		<Platform
			Name="Win32"/>
	</Platforms>
	<Configurations>
		<Configuration
			Name="Release|Win32"
			OutputDirectory=".\Release"
			IntermediateDirectory=".\Release"
			ConfigurationType="2"
			UseOfMFC="0"
			ATLMinimizesCRunTimeLibraryUsage="FALSE"
			CharacterSet="2">
			<Tool
				Name="VCCLCompilerTool"
				InlineFunctionExpansion="1"
				PreprocessorDefinitions="WIN32;NDEBUG;_WINDOWS;_USRDLL;PARTCONV_EXPORTS"
				StringPooling="TRUE"
				RuntimeLibrary="0"
				EnableFunctionLevelLinking="TRUE"
				UsePrecompiledHeader="2"
				PrecompiledHeaderFile=".\Release/partconv.pch"
				AssemblerListingLocation=".\Release/"
				ObjectFile=".\Release/"
				ProgramDataBaseFileName=".\Release/"
				WarningLevel="3"
				SuppressStartupBanner="TRUE"/>
			<Tool
				Name="VCCustomBuildTool"/>
			<Tool
				Name="VCLinkerTool"
				AdditionalOptions="/MACHINE:I386"
				AdditionalDependencies="odbc32.lib odbccp32.lib"
				OutputFile=".\Release/partconv.dll"
				LinkIncremental="1"
				SuppressStartupBanner="TRUE"
				ProgramDatabaseFile=".\Release/partconv.pdb"
				ImportLibrary=".\Release/partconv.lib"/>
			<Tool
				Name="VCMIDLTool"
				PreprocessorDefinitions="NDEBUG"
				MkTypLibCompatible="TRUE"
				SuppressStartupBanner="TRUE"
				TargetEnvironment="1"
				TypeLibraryName=".\Release/partconv.tlb"/>
			<Tool
				Name="VCPostBuildEventTool"/>
			<Tool
				Name="VCPreBuildEventTool"/>
			<Tool
				Name="VCPreLinkEventTool"/>
			<Tool
				Name="VCResourceCompilerTool"
				PreprocessorDefinitions="NDEBUG"
				Culture="3079"/>
			<Tool
				Name="VCWebServiceProxyGeneratorTool"/>
			<Tool
				Name="VCWebDeploymentTool"/>
		</Configuration>
		<Configuration
			Name="Debug|Win32"
			OutputDirectory=".\Debug"
			IntermediateDirectory=".\Debug"
			ConfigurationType="2"
			UseOfMFC="0"
			ATLMinimizesCRunTimeLibraryUsage="FALSE"
			CharacterSet="2">
			<Tool
				Name="VCCLCompilerTool"
				Optimization="0"
				PreprocessorDefinitions="WIN32;_WINDOWS;_USRDLL;PARTCONV_EXPORTS;NDEBUG;_WINDOWS;_USRDLL;LEST_I;NT"
				BasicRuntimeChecks="0"
				RuntimeLibrary="0"
				DisableLanguageExtensions="TRUE"
				UsePrecompiledHeader="0"
				PrecompiledHeaderFile=""
				AssemblerOutput="2"
				AssemblerListingLocation=".\Debug/"
				ObjectFile=".\Debug/"
				ProgramDataBaseFileName=".\Debug/"
				WarningLevel="3"
				SuppressStartupBanner="TRUE"
				Detect64BitPortabilityProblems="TRUE"
				DebugInformationFormat="0"
				CompileAs="1"
				ShowIncludes="TRUE"/>
			<Tool
				Name="VCCustomBuildTool"/>
			<Tool
				Name="VCLinkerTool"
				AdditionalOptions="/MACHINE:I386"
				AdditionalDependencies="odbc32.lib odbccp32.lib pd.lib fftw3.lib"
				OutputFile="..\partconv~.dll"
				LinkIncremental="1"
				SuppressStartupBanner="TRUE"
				GenerateDebugInformation="TRUE"
				ProgramDatabaseFile=".\Debug/partconv.pdb"
				ImportLibrary=".\Debug/partconv.lib"
				TargetMachine="1"/>
			<Tool
				Name="VCMIDLTool"
				PreprocessorDefinitions="_DEBUG"
				MkTypLibCompatible="TRUE"
				SuppressStartupBanner="TRUE"
				TargetEnvironment="1"
				TypeLibraryName=".\Debug/partconv.tlb"/>
			<Tool
				Name="VCPostBuildEventTool"/>
			<Tool
				Name="VCPreBuildEventTool"/>
			<Tool
				Name="VCPreLinkEventTool"/>
			<Tool
				Name="VCResourceCompilerTool"
				PreprocessorDefinitions="_DEBUG"
				Culture="3079"/>
			<Tool
				Name="VCWebServiceProxyGeneratorTool"/>
			<Tool
				Name="VCWebDeploymentTool"/>
		</Configuration>
	</Configurations>
	<Files>
		<Filter
			Name="Quellcodedateien"
			Filter="cpp;c;cxx;rc;def;r;odl;idl;hpj;bat">
			<File
				RelativePath="partconv.c">
				<FileConfiguration
					Name="Release|Win32">
					<Tool
						Name="VCCLCompilerTool"
						PreprocessorDefinitions="WIN32;NDEBUG;_WINDOWS;_USRDLL;PARTCONV_EXPORTS;_MBCS;$(NoInherit)"/>
				</FileConfiguration>
				<FileConfiguration
					Name="Debug|Win32">
					<Tool
						Name="VCCLCompilerTool"
						PreprocessorDefinitions="WIN32;_DEBUG;_WINDOWS;_USRDLL;PARTCONV_EXPORTS;_MBCS;$(NoInherit)"
						BasicRuntimeChecks="3"/>
				</FileConfiguration>
			</File>
		</Filter>
		<Filter
			Name="Header-Dateien"
			Filter="h;hpp;hxx;hm;inl">
			<File
				RelativePath="fftw3.h">
			</File>
			<File
				RelativePath="m_pd.h">
			</File>
		</Filter>
		<Filter
			Name="Ressourcendateien"
			Filter="ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe">
		</Filter>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>

--- NEW FILE: partconv~.dsp ---
# Microsoft Developer Studio Project File - Name="partconv" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** NICHT BEARBEITEN **

# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102

CFG=partconv - Win32 Debug
!MESSAGE Dies ist kein gültiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und führen Sie den Befehl
!MESSAGE 
!MESSAGE NMAKE /f "partconv.mak".
!MESSAGE 
!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
!MESSAGE 
!MESSAGE NMAKE /f "partconv.mak" CFG="partconv - Win32 Debug"
!MESSAGE 
!MESSAGE Für die Konfiguration stehen zur Auswahl:
!MESSAGE 
!MESSAGE "partconv - Win32 Release" (basierend auf  "Win32 (x86) Dynamic-Link Library")
!MESSAGE "partconv - Win32 Debug" (basierend auf  "Win32 (x86) Dynamic-Link Library")
!MESSAGE 

# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe

!IF  "$(CFG)" == "partconv - Win32 Release"

# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "PARTCONV_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "PARTCONV_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0xc07 /d "NDEBUG"
# ADD RSC /l 0xc07 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386

!ELSEIF  "$(CFG)" == "partconv - Win32 Debug"

# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "PARTCONV_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "PARTCONV_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0xc07 /d "_DEBUG"
# ADD RSC /l 0xc07 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pd.lib fftw3.lib /nologo /dll /debug /machine:I386 /out:"C:\Programme\pd_0.37\extra\partconv.dll" /pdbtype:sept

!ENDIF 

# Begin Target

# Name "partconv - Win32 Release"
# Name "partconv - Win32 Debug"
# Begin Group "Quellcodedateien"

# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File

SOURCE=.\partconv.c
# End Source File
# End Group
# Begin Group "Header-Dateien"

# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File

SOURCE=.\fftw3.h
# End Source File
# Begin Source File

SOURCE=.\m_pd.h
# End Source File
# End Group
# Begin Group "Ressourcendateien"

# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

--- NEW FILE: partconv~.dsw ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: README.txt ---

aenv~ is a asymptotic ADSR envelope generator; The output value approaches the
target values as asymptotes.



partconv~ is an external that implements partitioned fast convolution,
suitable for convolving input signals with long impulse responses for reverbs,
etc.  This release offers much improved performance, as well as independence
of the partition size and your patch's blocksize.  It includes Altivec code
from Chris Clepper.  There's also some SSE 1 code that produces almost correct
results but doesn't seem to improve performance.  If you are familiar with SSE
and want to have a go at writing an SSE version, please do!
partconv~ requires FFTW3 (http://fftw.org)



pvoc~ is a phase vocoder based on Pd's 09.pvoc.pd example patch. Advantages over the abstraction include (reportedly) faster execution, instantaneous response to input, and adjustable phase locking. It requires FFTW3. 
bensaylor's Home 



susloop~: sample player with various loop methods (ping-pong, ... ) think
tracker. svf~  This is a signal-controlled port of Steve Harris' state
variable filter LADSPA plugin.



svf~: a signal-controlled port of Steve Harris' state variable filter
LADSPA plugin (http://plugin.org.uk).



zhzhx~: Turns the input signal into a staticky, distorted mess. Comes with tone
control. 



Benjamin R. Saylor <bensaylor at fastmail.fm>





More information about the Pd-cvs mailing list