[PD-cvs] externals/iemlib/iemlib1/src FIR~.c, NONE, 1.1 biquad_freq_resp.c, NONE, 1.1 db2v.c, NONE, 1.1 f2note.c, NONE, 1.1 filter~.c, NONE, 1.1 for++.c, NONE, 1.1 gate.c, NONE, 1.1 hml_shelf~.c, NONE, 1.1 iem_cot4~.c, NONE, 1.1 iem_delay~.c, NONE, 1.1 iem_pow4~.c, NONE, 1.1 iem_sqrt4~.c, NONE, 1.1 iemlib.h, NONE, 1.1 iemlib1.c, NONE, 1.1 iemlib1.dsp, NONE, 1.1 iemlib1.dsw, NONE, 1.1 lp1_t~.c, NONE, 1.1 makefile, NONE, 1.1 makefile.darwin, NONE, 1.1 makefile_linux, NONE, 1.1 makefile_win, NONE, 1.1 mov_avrg_kern~.c, NONE, 1.1 para_bp2~.c, NONE, 1.1 peakenv~.c, NONE, 1.1 prvu~.c, NONE, 1.1 pvu~.c, NONE, 1.1 rvu~.c, NONE, 1.1 sin_phase~.c, NONE, 1.1 soundfile_info.c, NONE, 1.1 split.c, NONE, 1.1 v2db.c, NONE, 1.1 vcf_filter~.c, NONE, 1.1

musil tmusil at users.sourceforge.net
Sat Dec 9 02:57:30 CET 2006


Update of /cvsroot/pure-data/externals/iemlib/iemlib1/src
In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv16686/iemlib/iemlib1/src

Added Files:
	FIR~.c biquad_freq_resp.c db2v.c f2note.c filter~.c for++.c 
	gate.c hml_shelf~.c iem_cot4~.c iem_delay~.c iem_pow4~.c 
	iem_sqrt4~.c iemlib.h iemlib1.c iemlib1.dsp iemlib1.dsw 
	lp1_t~.c makefile makefile.darwin makefile_linux makefile_win 
	mov_avrg_kern~.c para_bp2~.c peakenv~.c prvu~.c pvu~.c rvu~.c 
	sin_phase~.c soundfile_info.c split.c v2db.c vcf_filter~.c 
Log Message:
// class_sethelpsymbol();
changed help-*.pd to *-help.pd
chanded file structure to standard
1st step remove old

--- NEW FILE: filter~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>


/* ---------- filter~ - slow dynamic filter-kernel 1. and 2. order ----------- */

typedef struct _filter_tilde
{
  t_object  x_obj;
  t_float   wn1;
  t_float   wn2;
  t_float   a0;
  t_float   a1;
  t_float   a2;
  t_float   b1;
  t_float   b2;
  t_float   sr;
  t_float   cur_f;
  t_float   cur_l;
  t_float   cur_a;
  t_float   cur_b;
  t_float   delta_f;
  t_float   delta_a;
  t_float   delta_b;
  t_float   end_f;
  t_float   end_a;
  t_float   end_b;
  t_float   ticks_per_interpol_time;
  t_float   rcp_ticks;
  t_float   interpol_time;
  int       ticks;
  int       counter_f;
  int       counter_a;
  int       counter_b;
  int       inv;
  int       hp;
  int       first_order;
  int       event_mask;
  void      (*calc)();
  void      *x_debug_outlet;
  t_atom    x_at[5];
  t_float   x_msi;
} t_filter_tilde;

t_class *filter_tilde_class;

static void filter_tilde_snafu(t_filter_tilde *x)
{
  
}

static void filter_tilde_lp1(t_filter_tilde *x)
{
  t_float al;
  
  al = x->cur_a * x->cur_l;
  x->a0 = 1.0f/(1.0f + al);
  x->a1 = x->a0;
  x->b1 = (al - 1.0f)*x->a0;
}

static void filter_tilde_lp2(t_filter_tilde *x)
{
  t_float l, al, bl2, rcp;
  
  l = x->cur_l;
  al = l*x->cur_a;
  bl2 = l*l*x->cur_b + 1.0f;
  rcp = 1.0f/(al + bl2);
  x->a0 = rcp;
  x->a1 = 2.0f*rcp;
  x->a2 = x->a0;
  x->b1 = rcp*2.0f*(bl2 - 2.0f);
  x->b2 = rcp*(al - bl2);
}

static void filter_tilde_hp1(t_filter_tilde *x)
{
  t_float al, rcp;
  
  al = x->cur_a * x->cur_l;
  rcp = 1.0f/(1.0f + al);
  x->a0 = rcp*al;
  x->a1 = -x->a0;
  x->b1 = rcp*(al - 1.0f);
}

static void filter_tilde_hp2(t_filter_tilde *x)
{
  t_float l, al, bl2, rcp;
  
  l = x->cur_l;
  bl2 = l*l*x->cur_b + 1.0f;
  al = l*x->cur_a;
  rcp = 1.0f/(al + bl2);
  x->a0 = rcp*(bl2 - 1.0f);
  x->a1 = -2.0f*x->a0;
  x->a2 = x->a0;
  x->b1 = rcp*2.0f*(bl2 - 2.0f);
  x->b2 = rcp*(al - bl2);
}

static void filter_tilde_rp2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*l;
  x->a2 = -x->a0;
  x->b1 = rcp*2.0f*(l2 - 2.0f);
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_bp2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*al;
  x->a2 = -x->a0;
  x->b1 = rcp*2.0f*(l2 - 2.0f);
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_bs2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*l2;
  x->a1 = rcp*2.0f*(2.0f - l2);
  x->a2 = x->a0;
  x->b1 = -x->a1;
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_rpw2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a/x->cur_f;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*l;
  x->a2 = -x->a0;
  x->b1 = rcp*2.0f*(l2 - 2.0f);
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_bpw2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a/x->cur_f;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*al;
  x->a2 = -x->a0;
  x->b1 = rcp*2.0f*(l2 - 2.0f);
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_bsw2(t_filter_tilde *x)
{
  t_float l, al, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a/x->cur_f;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*l2;
  x->a1 = rcp*2.0f*(2.0f - l2);
  x->a2 = x->a0;
  x->b1 = -x->a1;
  x->b2 = rcp*(al - l2);
}

static void filter_tilde_ap1(t_filter_tilde *x)
{
  t_float al;
  
  al = x->cur_a * x->cur_l;
  x->a0 = (1.0f - al)/(1.0f + al);
  x->b1 = -x->a0;
}

static void filter_tilde_ap2(t_filter_tilde *x)
{
  t_float l, al, bl2, rcp;
  
  l = x->cur_l;
  bl2 = l*l*x->cur_b + 1.0f;
  al = l*x->cur_a;
  rcp = 1.0f/(al + bl2);
  x->a1 = rcp*2.0f*(2.0f - bl2);
  x->a0 = rcp*(bl2 - al);
  x->b1 = -x->a1;
  x->b2 = -x->a0;
}

/*static void filter_tilde_bp2(t_filter_tilde *x)
{
t_float l, al, l2, rcp;

  l = x->cur_l;
  l2 = l*l + 1.0;
  al = l*x->cur_a;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*al;
  x->a2 = -x->a0;
  x->b1 = rcp*2.0f*(2.0f - l2);
  x->b2 = rcp*(l2 - al);
}*/

static void filter_tilde_dsp_tick(t_filter_tilde *x)
{
  if(x->event_mask)
  {
    if(x->counter_f)
    {
      float l, si, co;
      
      if(x->counter_f <= 1)
      {
        x->cur_f = x->end_f;
        x->counter_f = 0;
        x->event_mask &= 6;/*set event_mask_bit 0 = 0*/
      }
      else
      {
        x->counter_f--;
        x->cur_f *= x->delta_f;
      }
      l = x->cur_f * x->sr;
      if(l < 1.0e-20f)
        x->cur_l = 1.0e20f;
      else if(l > 1.57079632f)
        x->cur_l = 0.0f;
      else
      {
        si = sin(l);
        co = cos(l);
        x->cur_l = co/si;
      }
    }
    if(x->counter_a)
    {
      if(x->counter_a <= 1)
      {
        x->cur_a = x->end_a;
        x->counter_a = 0;
        x->event_mask &= 5;/*set event_mask_bit 1 = 0*/
      }
      else
      {
        x->counter_a--;
        x->cur_a *= x->delta_a;
      }
    }
    if(x->counter_b)
    {
      if(x->counter_b <= 1)
      {
        x->cur_b = x->end_b;
        x->counter_b = 0;
        x->event_mask &= 3;/*set event_mask_bit 2 = 0*/
      }
      else
      {
        x->counter_b--;
        x->cur_b *= x->delta_b;
      }
    }
    
    (*(x->calc))(x);
    
    /* stability check */
    if(x->first_order)
    {
      if(x->b1 <= -0.9999998f)
        x->b1 = -0.9999998f;
      else if(x->b1 >= 0.9999998f)
        x->b1 = 0.9999998f;
    }
    else
    {
      float discriminant = x->b1 * x->b1 + 4.0f * x->b2;
      
      if(x->b1 <= -1.9999996f)
        x->b1 = -1.9999996f;
      else if(x->b1 >= 1.9999996f)
        x->b1 = 1.9999996f;
      
      if(x->b2 <= -0.9999998f)
        x->b2 = -0.9999998f;
      else if(x->b2 >= 0.9999998f)
        x->b2 = 0.9999998f;
      
      if(discriminant >= 0.0f)
      {
        if(0.9999998f - x->b1 - x->b2 < 0.0f)
          x->b2 = 0.9999998f - x->b1;
        if(0.9999998f + x->b1 - x->b2 < 0.0f)
          x->b2 = 0.9999998f + x->b1;
      }
    }
  }
}

static t_int *filter_tilde_perform_2o(t_int *w)
{
  t_float *in = (float *)(w[1]);
  t_float *out = (float *)(w[2]);
  t_filter_tilde *x = (t_filter_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn0, wn1=x->wn1, wn2=x->wn2;
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  filter_tilde_dsp_tick(x);
  for(i=0; i<n; i++)
  {
    wn0 = *in++ + b1*wn1 + b2*wn2;
    *out++ = a0*wn0 + a1*wn1 + a2*wn2;
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->wn1 = wn1;
  x->wn2 = wn2;
  return(w+5);
}
/*   yn0 = *out;
xn0 = *in;
*************
yn0 = a0*xn0 + a1*xn1 + a2*xn2 + b1*yn1 + b2*yn2;
yn2 = yn1;
yn1 = yn0;
xn2 = xn1;
xn1 = xn0;
*************************
y/x = (a0 + a1*z-1 + a2*z-2)/(1 - b1*z-1 - b2*z-2);*/

static t_int *filter_tilde_perf8_2o(t_int *w)
{
  t_float *in = (float *)(w[1]);
  t_float *out = (float *)(w[2]);
  t_filter_tilde *x = (t_filter_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn[10];
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  filter_tilde_dsp_tick(x);
  wn[0] = x->wn2;
  wn[1] = x->wn1;
  for(i=0; i<n; i+=8, in+=8, out+=8)
  {
    wn[2] = in[0] + b1*wn[1] + b2*wn[0];
    out[0] = a0*wn[2] + a1*wn[1] + a2*wn[0];
    wn[3] = in[1] + b1*wn[2] + b2*wn[1];
    out[1] = a0*wn[3] + a1*wn[2] + a2*wn[1];
    wn[4] = in[2] + b1*wn[3] + b2*wn[2];
    out[2] = a0*wn[4] + a1*wn[3] + a2*wn[2];
    wn[5] = in[3] + b1*wn[4] + b2*wn[3];
    out[3] = a0*wn[5] + a1*wn[4] + a2*wn[3];
    wn[6] = in[4] + b1*wn[5] + b2*wn[4];
    out[4] = a0*wn[6] + a1*wn[5] + a2*wn[4];
    wn[7] = in[5] + b1*wn[6] + b2*wn[5];
    out[5] = a0*wn[7] + a1*wn[6] + a2*wn[5];
    wn[8] = in[6] + b1*wn[7] + b2*wn[6];
    out[6] = a0*wn[8] + a1*wn[7] + a2*wn[6];
    wn[9] = in[7] + b1*wn[8] + b2*wn[7];
    out[7] = a0*wn[9] + a1*wn[8] + a2*wn[7];
    wn[0] = wn[8];
    wn[1] = wn[9];
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn[0]))
    wn[0] = 0.0f;
  if(IEM_DENORMAL(wn[1]))
    wn[1] = 0.0f;
  
  x->wn1 = wn[1];
  x->wn2 = wn[0];
  return(w+5);
}

static t_int *filter_tilde_perform_1o(t_int *w)
{
  t_float *in = (float *)(w[1]);
  t_float *out = (float *)(w[2]);
  t_filter_tilde *x = (t_filter_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn0, wn1=x->wn1;
  t_float a0=x->a0, a1=x->a1;
  t_float b1=x->b1;
  
  filter_tilde_dsp_tick(x);
  for(i=0; i<n; i++)
  {
    wn0 = *in++ + b1*wn1;
    *out++ = a0*wn0 + a1*wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->wn1 = wn1;
  return(w+5);
}

static t_int *filter_tilde_perf8_1o(t_int *w)
{
  t_float *in = (float *)(w[1]);
  t_float *out = (float *)(w[2]);
  t_filter_tilde *x = (t_filter_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn[9];
  t_float a0=x->a0, a1=x->a1;
  t_float b1=x->b1;
  
  filter_tilde_dsp_tick(x);
  wn[0] = x->wn1;
  for(i=0; i<n; i+=8, in+=8, out+=8)
  {
    wn[1] = in[0] + b1*wn[0];
    out[0] = a0*wn[1] + a1*wn[0];
    wn[2] = in[1] + b1*wn[1];
    out[1] = a0*wn[2] + a1*wn[1];
    wn[3] = in[2] + b1*wn[2];
    out[2] = a0*wn[3] + a1*wn[2];
    wn[4] = in[3] + b1*wn[3];
    out[3] = a0*wn[4] + a1*wn[3];
    wn[5] = in[4] + b1*wn[4];
    out[4] = a0*wn[5] + a1*wn[4];
    wn[6] = in[5] + b1*wn[5];
    out[5] = a0*wn[6] + a1*wn[5];
    wn[7] = in[6] + b1*wn[6];
    out[6] = a0*wn[7] + a1*wn[6];
    wn[8] = in[7] + b1*wn[7];
    out[7] = a0*wn[8] + a1*wn[7];
    wn[0] = wn[8];
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn[0]))
    wn[0] = 0.0f;
  
  x->wn1 = wn[0];
  return(w+5);
}

static void filter_tilde_ft4(t_filter_tilde *x, t_floatarg t)
{
  int i = (int)((x->ticks_per_interpol_time)*t+0.49999f);
  
  x->interpol_time = t;
  if(i <= 0)
  {
    x->ticks = 1;
    x->rcp_ticks = 1.0;
  }
  else
  {
    x->ticks = i;
    x->rcp_ticks = 1.0 / (t_float)i;
  }
}

static void filter_tilde_ft3(t_filter_tilde *x, t_floatarg b)
{
  if(b <= 0.0f)
    b = 0.000001f;
  if(x->hp)
    b = 1.0 / b;
  if(b != x->cur_b)
  {
    x->end_b = b;
    x->counter_b = x->ticks;
    x->delta_b = exp(log(b/x->cur_b)*x->rcp_ticks);
    x->event_mask |= 4;/*set event_mask_bit 2 = 1*/
  }
}

static void filter_tilde_ft2(t_filter_tilde *x, t_floatarg a)
{
  if(a <= 0.0f)
    a = 0.000001f;
  if(x->inv)
    a = 1.0f / a;
  if(x->hp)
    a /= x->cur_b;
  if(a != x->cur_a)
  {
    x->end_a = a;
    x->counter_a = x->ticks;
    x->delta_a = exp(log(a/x->cur_a)*x->rcp_ticks);
    x->event_mask |= 2;/*set event_mask_bit 1 = 1*/
  }
}

static void filter_tilde_ft1(t_filter_tilde *x, t_floatarg f)
{
  if(f <= 0.0f)
    f = 0.000001f;
  if(f != x->cur_f)
  {
    x->end_f = f;
    x->counter_f = x->ticks;
    x->delta_f = exp(log(f/x->cur_f)*x->rcp_ticks);
    x->event_mask |= 1;/*set event_mask_bit 0 = 1*/
  }
}

static void filter_tilde_print(t_filter_tilde *x)
{
  //  post("fb1 = %g, fb2 = %g, ff1 = %g, ff2 = %g, ff3 = %g", x->b1, x->b2, x->a0, x->a1, x->a2);
  x->x_at[0].a_w.w_float = x->b1;
  x->x_at[1].a_w.w_float = x->b2;
  x->x_at[2].a_w.w_float = x->a0;
  x->x_at[3].a_w.w_float = x->a1;
  x->x_at[4].a_w.w_float = x->a2;
  outlet_list(x->x_debug_outlet, &s_list, 5, x->x_at);
}

static void filter_tilde_dsp(t_filter_tilde *x, t_signal **sp)
{
  t_float si, co, f;
  int i, n=(int)sp[0]->s_n;
  
  x->sr = 3.14159265358979323846f / (t_float)(sp[0]->s_sr);
  x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time)+0.49999f);
  if(i <= 0)
  {
    x->ticks = 1;
    x->rcp_ticks = 1.0f;
  }
  else
  {
    x->ticks = i;
    x->rcp_ticks = 1.0f / (t_float)i;
  }
  f = x->cur_f * x->sr;
  if(f < 1.0e-20f)
    x->cur_l = 1.0e20f;
  else if(f > 1.57079632f)
    x->cur_l = 0.0f;
  else
  {
    si = sin(f);
    co = cos(f);
    x->cur_l = co/si;
  }
  if(x->first_order)
  {
    if(n&7)
      dsp_add(filter_tilde_perform_1o, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
    else
      dsp_add(filter_tilde_perf8_1o, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
  }
  else
  {
    if(n&7)
      dsp_add(filter_tilde_perform_2o, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
    else
      dsp_add(filter_tilde_perf8_2o, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
  }
}

static void *filter_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
  t_filter_tilde *x = (t_filter_tilde *)pd_new(filter_tilde_class);
  int i;
  t_float si, co, f=0.0f, a=0.0f, b=0.0f, interpol=0.0f;
  t_symbol *filt_typ=gensym("");
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft3"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft4"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_debug_outlet = outlet_new(&x->x_obj, &s_list);
  x->x_msi = 0.0f;
  
  x->x_at[0].a_type = A_FLOAT;
  x->x_at[1].a_type = A_FLOAT;
  x->x_at[2].a_type = A_FLOAT;
  x->x_at[3].a_type = A_FLOAT;
  x->x_at[4].a_type = A_FLOAT;
  
  x->event_mask = 1;
  x->counter_f = 1;
  x->counter_a = 0;
  x->counter_b = 0;
  x->delta_f = 0.0f;
  x->delta_a = 0.0f;
  x->delta_b = 0.0f;
  x->interpol_time = 0.0f;
  x->wn1 = 0.0f;
  x->wn2 = 0.0f;
  x->a0 = 0.0f;
  x->a1 = 0.0f;
  x->a2 = 0.0f;
  x->b1 = 0.0f;
  x->b2 = 0.0f;
  x->sr = 3.14159265358979323846f / 44100.0f;
  x->calc = filter_tilde_snafu;
  x->first_order = 0;
  if((argc == 5)&&IS_A_FLOAT(argv,4)&&IS_A_FLOAT(argv,3)&&IS_A_FLOAT(argv,2)&&IS_A_FLOAT(argv,1)&&IS_A_SYMBOL(argv,0))
  {
    filt_typ = atom_getsymbolarg(0, argc, argv);
    f = (t_float)atom_getfloatarg(1, argc, argv);
    a = (t_float)atom_getfloatarg(2, argc, argv);
    b = (t_float)atom_getfloatarg(3, argc, argv);
    interpol = (t_float)atom_getfloatarg(4, argc, argv);
  }
  x->cur_f = f;
  f *= x->sr;
  if(f < 1.0e-20f)
    x->cur_l = 1.0e20f;
  else if(f > 1.57079632f)
    x->cur_l = 0.0f;
  else
  {
    si = sin(f);
    co = cos(f);
    x->cur_l = co/si;
  }
  if(a <= 0.0f)
    a = 0.000001f;
  if(b <= 0.0f)
    b = 0.000001f;
  x->cur_b = b;
  
  if(interpol <= 0.0f)
    interpol = 0.0f;
  x->interpol_time = interpol;
  x->ticks_per_interpol_time = 0.001f * 44100.0f / 64.0f;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time)+0.49999f);
  if(i <= 0)
  {
    x->ticks = 1;
    x->rcp_ticks = 1.0f;
  }
  else
  {
    x->ticks = i;
    x->rcp_ticks = 1.0f / (t_float)i;
  }
  
  x->calc = filter_tilde_snafu;
  
  x->cur_a = 1.0f/a; /*a was Q*/
  x->inv = 1;
  x->hp = 0;
  
  if(filt_typ->s_name)
  {
    if(filt_typ == gensym("ap1"))
    {
      x->calc = filter_tilde_ap1;
      x->a1 = 1.0f;
      x->first_order = 1;
    }
    else if(filt_typ == gensym("ap2"))
    {
      x->calc = filter_tilde_ap2;
      x->a2 = 1.0f;
    }
    else if(filt_typ == gensym("ap1c"))
    {
      x->calc = filter_tilde_ap1;
      x->a1 = 1.0f;
      x->inv = 0;
      x->cur_a = a; /*a was damping*/
      x->first_order = 1;
    }
    else if(filt_typ == gensym("ap2c"))
    {
      x->calc = filter_tilde_ap2;
      x->a2 = 1.0f;
      x->inv = 0;
      x->cur_a = a; /*a was damping*/
    }
    else if(filt_typ == gensym("bpq2"))
    {
      x->calc = filter_tilde_bp2;
    }
    else if(filt_typ == gensym("rbpq2"))
    {
      x->calc = filter_tilde_rp2;
    }
    else if(filt_typ == gensym("bsq2"))
    {
      x->calc = filter_tilde_bs2;
    }
    else if(filt_typ == gensym("bpw2"))
    {
      x->calc = filter_tilde_bpw2;
      x->inv = 0;
      x->cur_a = a; /*a was bw*/
    }
    else if(filt_typ == gensym("rbpw2"))
    {
      x->calc = filter_tilde_rpw2;
      x->inv = 0;
      x->cur_a = a; /*a was bw*/
    }
    else if(filt_typ == gensym("bsw2"))
    {
      x->calc = filter_tilde_bsw2;
      x->inv = 0;
      x->cur_a = a; /*a was bw*/
    }
    else if(filt_typ == gensym("hp1"))
    {
      x->calc = filter_tilde_hp1;
      x->first_order = 1;
    }
    else if(filt_typ == gensym("hp2"))
    {
      x->calc = filter_tilde_hp2;
    }
    else if(filt_typ == gensym("lp1"))
    {
      x->calc = filter_tilde_lp1;
      x->first_order = 1;
    }
    else if(filt_typ == gensym("lp2"))
    {
      x->calc = filter_tilde_lp2;
    }
    else if(filt_typ == gensym("hp1c"))
    {
      x->calc = filter_tilde_hp1;
      x->cur_a = 1.0f / a;
      x->first_order = 1;
    }
    else if(filt_typ == gensym("hp2c"))
    {
      x->calc = filter_tilde_hp2;
      x->inv = 0;
      x->cur_a = a / b;
      x->cur_b = 1.0f / b;
      x->hp = 1;
    }
    else if(filt_typ == gensym("lp1c"))
    {
      x->calc = filter_tilde_lp1;
      x->inv = 0;
      x->cur_a = a; /*a was damping*/
      x->first_order = 1;
    }
    else if(filt_typ == gensym("lp2c"))
    {
      x->calc = filter_tilde_lp2;
      x->inv = 0;
      x->cur_a = a; /*a was damping*/
    }
    else
    {
      post("filter~-Error: 1. initial-arguments: <sym> kind: \
lp1, lp2, hp1, hp2, \
lp1c, lp2c, hp1c, hp2c, \
ap1, ap2, ap1c, ap2c, \
bpq2, rbpq2, bsq2, \
bpw2, rbpw2, bsw2!");
    }
    x->end_f = x->cur_f;
    x->end_a = x->cur_a;
    x->end_b = x->cur_b;
  }
  return (x);
}

void filter_tilde_setup(void)
{
  filter_tilde_class = class_new(gensym("filter~"), (t_newmethod)filter_tilde_new,
        0, sizeof(t_filter_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(filter_tilde_class, t_filter_tilde, x_msi);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_ft3, gensym("ft3"), A_FLOAT, 0);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_ft4, gensym("ft4"), A_FLOAT, 0);
  class_addmethod(filter_tilde_class, (t_method)filter_tilde_print, gensym("print"), 0);
//  class_sethelpsymbol(filter_tilde_class, gensym("iemhelp/help-filter~"));
}

--- NEW FILE: makefile_linux ---
current: all

.SUFFIXES: .pd_linux

INCLUDE = -I. -I/usr/local/src/pd/src

LDFLAGS = -export-dynamic -shared
LIB = -ldl -lm -lpthread

#select either the DBG and OPT compiler flags below:

CFLAGS = -DPD -DUNIX -W -Werror -Wno-unused \
	-Wno-parentheses -Wno-switch -O6 -funroll-loops -fomit-frame-pointer -fno-strict-aliasing \
        -DDL_OPEN

SYSTEM = $(shell uname -m)

# the sources

SRC = 	biquad_freq_resp.c \
	db2v.c \
	f2note.c \
	filter~.c \
	FIR~.c \
	forpp.c \
	gate.c \
	hml_shelf~.c \
	iem_cot4~.c \
	iem_delay~.c \
	iem_pow4~.c \
	iem_sqrt4~.c \
	lp1_t~.c \
	mov_avrg_kern~.c \
	para_bp2~.c \
	peakenv~.c \
	prvu~.c \
	pvu~.c \
	rvu~.c \
	sin_phase~.c \
	soundfile_info.c \
	split.c \
	v2db.c \
	vcf_filter~.c \
	iemlib1.c

TARGET = iemlib1.pd_linux


OBJ = $(SRC:.c=.o) 

#
#  ------------------ targets ------------------------------------
#

clean:
	rm $(TARGET)
	rm *.o

all: $(OBJ)
	@echo :: $(OBJ)
	$(LD) $(LDFLAGS) -o $(TARGET) *.o $(LIB)
	strip --strip-unneeded $(TARGET)

$(OBJ) : %.o : %.c
	$(CC) $(CFLAGS) $(INCLUDE) -c -o $*.o $*.c





--- NEW FILE: soundfile_info.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#define SFI_HEADER_SAMPLERATE 0
#define SFI_HEADER_FILENAME 1
#define SFI_HEADER_MULTICHANNEL_FILE_LENGTH 2
#define SFI_HEADER_HEADERBYTES 3
#define SFI_HEADER_CHANNELS 4
#define SFI_HEADER_BYTES_PER_SAMPLE 5
#define SFI_HEADER_ENDINESS 6

#define SFI_HEADER_SIZE 7



/* --------------------------- soundfile_info -------------------------------- */
/* -- reads only header of a wave-file and outputs the important parameters -- */

static t_class *soundfile_info_class;

typedef struct _soundfile_info
{
  t_object  x_obj;
  long      *x_begmem;
  int       x_size;
  t_atom    x_atheader[SFI_HEADER_SIZE];
  t_canvas  *x_canvas;
  void      *x_list_out;
} t_soundfile_info;

static short soundfile_info_str2short(char *cvec)
{
  short s=0;
  unsigned char *uc=(unsigned char *)cvec;
  
  s += (short)(*uc);
  s += (short)(*(uc+1)*256);
  return(s);
}

static long soundfile_info_str2long(char *cvec)
{
  long l=0;
  unsigned char *uc=(unsigned char *)cvec;
  
  l += (long)(*uc);
  l += (long)(*(uc+1)*256);
  l += (long)(*(uc+2)*65536);
  l += (long)(*(uc+3)*16777216);
  return(l);
}

static void soundfile_info_read(t_soundfile_info *x, t_symbol *filename)
{
  char completefilename[400];
  int i, n, n2, n4, filesize, read_chars, header_size=0, ch, bps, sr;
  FILE *fh;
  t_atom *at;
  char *cvec;
  long ll;
  short ss;
  
  if(filename->s_name[0] == '/')/*make complete path + filename*/
  {
    strcpy(completefilename, filename->s_name);
  }
  else if(((filename->s_name[0] >= 'A')&&(filename->s_name[0] <= 'Z')||
    (filename->s_name[0] >= 'a')&&(filename->s_name[0] <= 'z'))&&
    (filename->s_name[1] == ':')&&(filename->s_name[2] == '/'))
  {
    strcpy(completefilename, filename->s_name);
  }
  else
  {
    strcpy(completefilename, canvas_getdir(x->x_canvas)->s_name);
    strcat(completefilename, "/");
    strcat(completefilename, filename->s_name);
  }
  
  fh = fopen(completefilename,"rb");
  if(!fh)
  {
    post("soundfile_info_read: cannot open %s !!\n", completefilename);
  }
  else
  {
    n = x->x_size;
    n2 = sizeof(short) * x->x_size;
    n4 = sizeof(long) * x->x_size;
    fseek(fh, 0, SEEK_END);
    filesize = ftell(fh);
    fseek(fh,0,SEEK_SET);
    read_chars = (int)fread(x->x_begmem, sizeof(char), n4, fh) /2;
    fclose(fh);
    //    post("read chars = %d", read_chars);
    cvec = (char *)x->x_begmem;
    if(read_chars > 4)
    {
      if(strncmp(cvec, "RIFF", 4))
      {
        post("soundfile_info_read-error:  %s is no RIFF-WAVE-file", completefilename);
        goto soundfile_info_end;
      }
      header_size += 8;
      cvec += 8;
      if(strncmp(cvec, "WAVE", 4))
      {
        post("soundfile_info_read-error:  %s is no RIFF-WAVE-file", completefilename);
        goto soundfile_info_end;
      }
      header_size += 4;
      cvec += 4;
      
      for(i=header_size/2; i<read_chars; i++)
      {
        if(!strncmp(cvec, "fmt ", 4))
          goto soundfile_info_fmt;
        header_size += 2;
        cvec += 2;
      }
      post("soundfile_info_read-error:  %s has at begin no format-chunk", completefilename);
      goto soundfile_info_end;
      
soundfile_info_fmt:
      header_size += 4;
      cvec += 4;
      ll = soundfile_info_str2long(cvec);
      if(ll != 16)
      {
        post("soundfile_info_read-error:  %s has a format-chunk not equal to 16", completefilename);
        goto soundfile_info_end;
      }
      header_size += 4;
      cvec += 4;
      ss = soundfile_info_str2short(cvec);
      /* format */
      if(ss != 1)            /* PCM = 1 */
      {
        post("soundfile_info_read-error:  %s is not PCM-format coded", completefilename);
        goto soundfile_info_end;
      }
      header_size += 2;
      cvec += 2;
      ss = soundfile_info_str2short(cvec);
      /* channels */
      if((ss < 1) || (ss > 100))
      {
        post("soundfile_info_read-error:  %s has no common channel-number", completefilename);
        goto soundfile_info_end;
      }
      SETFLOAT(x->x_atheader+SFI_HEADER_CHANNELS, (t_float)ss);
      ch = ss;
      header_size += 2;
      cvec += 2;
      ll = soundfile_info_str2long(cvec);
      /* samplerate */
      if((ll > 400000) || (ll < 200))
      {
        post("soundfile_info_read-error:  %s has no common samplerate", completefilename);
        goto soundfile_info_end;
      }
      SETFLOAT(x->x_atheader+SFI_HEADER_SAMPLERATE, (t_float)ll);
      sr = ll;
      header_size += 4;
      cvec += 4;
      
      header_size += 4; /* bytes_per_sec */
      cvec += 4;
      ss = soundfile_info_str2short(cvec);
      
      /* bytes_per_sample */
      if((ss < 1) || (ss > 100))
      {
        post("soundfile_info_read-error:  %s has no common number of bytes per sample", completefilename);
        goto soundfile_info_end;
      }
      SETFLOAT(x->x_atheader+SFI_HEADER_BYTES_PER_SAMPLE, (t_float)(ss/ch));
      bps = ss;
      header_size += 2;
      cvec += 2;
      
      header_size += 2; /* bits_per_sample */
      cvec += 2;
      
      for(i=header_size/2; i<read_chars; i++)
      {
        if(!strncmp(cvec, "data", 4))
          goto soundfile_info_data;
        header_size += 2;
        cvec += 2;
      }
      post("soundfile_info_read-error:  %s has at begin no data-chunk", completefilename);
      goto soundfile_info_end;
      
soundfile_info_data:
      header_size += 8;
      cvec += 8;
      
      SETFLOAT(x->x_atheader+SFI_HEADER_HEADERBYTES, (t_float)header_size);
      
      filesize -= header_size;
      filesize /= bps;
      SETFLOAT(x->x_atheader+SFI_HEADER_MULTICHANNEL_FILE_LENGTH, (t_float)filesize);
      SETSYMBOL(x->x_atheader+SFI_HEADER_ENDINESS, gensym("l"));
      SETSYMBOL(x->x_atheader+SFI_HEADER_FILENAME, gensym(completefilename));
      
      /*      post("ch = %d", ss);
      post("sr = %d", ll);
      post("bps = %d", ss/ch);
      post("head = %d", header_size);
      post("len = %d", filesize);*/
      
      outlet_list(x->x_list_out, &s_list, SFI_HEADER_SIZE, x->x_atheader);
      
      
soundfile_info_end:
      
      ;
    }
  }
}

static void soundfile_info_free(t_soundfile_info *x)
{
  freebytes(x->x_begmem, x->x_size * sizeof(long));
}

static void *soundfile_info_new(void)
{
  t_soundfile_info *x = (t_soundfile_info *)pd_new(soundfile_info_class);
  
  x->x_size = 10000;
  x->x_begmem = (long *)getbytes(x->x_size * sizeof(long));
  x->x_list_out = outlet_new(&x->x_obj, &s_list);
  x->x_canvas = canvas_getcurrent();
  return (x);
}

/* ---------------- global setup function -------------------- */

void soundfile_info_setup(void)
{
  soundfile_info_class = class_new(gensym("soundfile_info"), (t_newmethod)soundfile_info_new,
    (t_method)soundfile_info_free, sizeof(t_soundfile_info), 0, 0);
  class_addmethod(soundfile_info_class, (t_method)soundfile_info_read, gensym("read"), A_SYMBOL, 0);
//  class_sethelpsymbol(soundfile_info_class, gensym("iemhelp/help-soundfile_info"));
}

--- NEW FILE: iem_pow4~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ------------------------ iem_pow4~ ----------------------------- */

static t_class *iem_pow4_tilde_class;

typedef struct _iem_pow4_tilde
{
  t_object  x_obj;
  t_float   x_exp;
  t_float   x_msi;
} t_iem_pow4_tilde;

static void iem_pow4_tilde_ft1(t_iem_pow4_tilde *x, t_floatarg f)
{
  x->x_exp = f;
}

static t_int *iem_pow4_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_iem_pow4_tilde *x = (t_iem_pow4_tilde *)(w[3]);
  t_float y=x->x_exp;
  t_float f, g;
  int n = (int)(w[4])/4;
  
  while (n--)
  {
    f = *in;
    if(f < 0.01f)
      f = 0.01f;
    else if(f > 1000.0f)
      f = 1000.0f;
    g = log(f);
    f = exp(g*y);
    *out++ = f;
    *out++ = f;
    *out++ = f;
    *out++ = f;
    in += 4;
  }
  return (w+5);
}

static void iem_pow4_tilde_dsp(t_iem_pow4_tilde *x, t_signal **sp)
{
  dsp_add(iem_pow4_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, sp[0]->s_n);
}

static void *iem_pow4_tilde_new(t_floatarg f)
{
  t_iem_pow4_tilde *x = (t_iem_pow4_tilde *)pd_new(iem_pow4_tilde_class);
  
  x->x_exp = f;
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  outlet_new(&x->x_obj, gensym("signal"));
  x->x_msi = 0;
  return (x);
}

void iem_pow4_tilde_setup(void)
{
  iem_pow4_tilde_class = class_new(gensym("iem_pow4~"), (t_newmethod)iem_pow4_tilde_new, 0,
    sizeof(t_iem_pow4_tilde), 0, A_DEFFLOAT, 0);
  class_addcreator((t_newmethod)iem_pow4_tilde_new, gensym("icot~"), 0);
  CLASS_MAINSIGNALIN(iem_pow4_tilde_class, t_iem_pow4_tilde, x_msi);
  class_addmethod(iem_pow4_tilde_class, (t_method)iem_pow4_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(iem_pow4_tilde_class, (t_method)iem_pow4_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
//  class_sethelpsymbol(iem_pow4_tilde_class, gensym("iemhelp/help-iem_pow4~"));
}

--- NEW FILE: makefile.darwin ---
current: all

.SUFFIXES: .pd_darwin

INCLUDE = -I. -I/usr/local/src/pd/src

LDFLAGS = -export-dynamic -shared
LIB = -ldl -lm -lpthread

#select either the DBG and OPT compiler flags below:

CFLAGS = -DPD -DUNIX -g -Wall -W -Werror -Wno-unused \
	-Wno-parentheses -Wno-switch -O2 -fno-strict-aliasing \
	$(INCLUDE) $(UCFLAGS) $(AFLAGS) \

MACOSXLINKFLAGS = -bundle -bundle_loader /usr/local/src/pd/bin/pd

SYSTEM = $(shell uname -m)

# the sources

SRC = biquad_freq_resp.c \
	db2v.c \
	f2note.c \
	filter~.c \
	FIR~.c \
	forpp.c \
	gate.c \
	hml_shelf~.c \
	iem_cot4~.c \
	iem_delay~.c \
	iem_pow4~.c \
	iem_sqrt4~.c \
	lp1_t~.c \
	mov_avrg_kern~.c \
	para_bp2~.c \
	peakenv~.c \
	prvu~.c \
	pvu~.c \
	rvu~.c \
	sin_phase~.c \
	soundfile_info.c \
	split.c \
	v2db.c \
	vcf_filter~.c \
	iemlib1.c

TARGET = iemlib1.pd_darwin


OBJ = $(SRC:.c=.o) 

#
#  ------------------ targets ------------------------------------
#

clean:
	rm ../../lib/$(TARGET)
	rm *.o

all: $(OBJ)
	@echo :: $(OBJ)
	$(CC) $(MACOSXLINKFLAGS) -o $(TARGET) *.o $(LIB)
	strip --strip-unneeded $(TARGET)
	mv $(TARGET) ../../lib

$(OBJ) : %.o : %.c
	touch $*.c
	$(CC) $(CFLAGS) -DPD $(INCLUDE) -c -o $*.o $*.c





--- NEW FILE: makefile_win ---
all: ..\iemlib1.dll

VIS_CPP_PATH = "C:\Programme\Microsoft Visual Studio\Vc98"
PD_INST_PATH = "C:\Programme\pd-0.39-2"
PD_WIN_INCLUDE_PATH = /I. /I$(PD_INST_PATH)\src /I$(VIS_CPP_PATH)\include
PD_WIN_C_FLAGS = /nologo /W3 /WX /DMSW /DNT /DPD /DWIN32 /DWINDOWS /Ox -DPA_LITTLE_ENDIAN
PD_WIN_L_FLAGS = /nologo

PD_WIN_LIB = /NODEFAULTLIB:libc /NODEFAULTLIB:oldnames /NODEFAULTLIB:kernel /NODEFAULTLIB:uuid \
	$(VIS_CPP_PATH)\lib\libc.lib \
	$(VIS_CPP_PATH)\lib\oldnames.lib \
	$(VIS_CPP_PATH)\lib\kernel32.lib \
	$(VIS_CPP_PATH)\lib\wsock32.lib \
	$(VIS_CPP_PATH)\lib\winmm.lib \
	$(PD_INST_PATH)\bin\pthreadVC.lib \
	$(PD_INST_PATH)\bin\pd.lib

SRC =	biquad_freq_resp.c \
		db2v.c \
		f2note.c \
		filter~.c \
		FIR~.c \
		for++.c \
		gate.c \
		hml_shelf~.c \
		iem_cot4~.c \
		iem_delay~.c \
		iem_pow4~.c \
		iem_sqrt4~.c \
		lp1_t~.c \
		mov_avrg_kern~.c \
		para_bp2~.c \
		peakenv~.c \
		prvu~.c \
		pvu~.c \
		rvu~.c \
		sin_phase~.c \
		soundfile_info.c \
		split.c \
		v2db.c \
		vcf_filter~.c \
		iemlib1.c


OBJ = $(SRC:.c=.obj)

.c.obj:
	cl $(PD_WIN_C_FLAGS) $(PD_WIN_INCLUDE_PATH) /c $*.c

..\iemlib1.dll: $(OBJ)
	link $(PD_WIN_L_FLAGS) /dll /export:iemlib1_setup \
	/out:..\iemlib1.dll $(OBJ) $(PD_WIN_LIB)

clean:
	del *.obj

--- NEW FILE: prvu~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ---------------- prvu~ - simple peak&rms-vu-meter. ----------------- */

typedef struct _prvu_tilde
{
  t_object  x_obj;
  t_atom    x_at[3];
  void      *x_clock_metro;
  t_float   x_metro_time;
  void      *x_clock_hold;
  t_float   x_hold_time;
  t_float   x_cur_peak;
  t_float   x_old_peak;
  t_float   x_hold_peak;
  int       x_hold;
  t_float   x_sum_rms;
  t_float   x_old_rms;
  t_float   x_rcp;
  t_float   x_sr;
  t_float   x_threshold_over;
  int       x_overflow_counter;
  t_float   x_release_time;
  t_float   x_c1;
  int       x_started;
  t_float   x_msi;
} t_prvu_tilde;

t_class *prvu_tilde_class;
static void prvu_tilde_tick_metro(t_prvu_tilde *x);
static void prvu_tilde_tick_hold(t_prvu_tilde *x);

static void prvu_tilde_reset(t_prvu_tilde *x)
{
  x->x_at[0].a_w.w_float = -99.9f;
  x->x_at[1].a_w.w_float = -99.9f;
  x->x_at[2].a_w.w_float = 0.0f;
  outlet_list(x->x_obj.ob_outlet, &s_list, 3, x->x_at);
  x->x_overflow_counter = 0;
  x->x_cur_peak = 0.0f;
  x->x_old_peak = 0.0f;
  x->x_hold_peak = 0.0f;
  x->x_sum_rms = 0.0f;
  x->x_old_rms = 0.0f;
  x->x_hold = 0;
  clock_unset(x->x_clock_hold);
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void prvu_tilde_stop(t_prvu_tilde *x)
{
  clock_unset(x->x_clock_metro);
  x->x_started = 0;
}

static void prvu_tilde_start(t_prvu_tilde *x)
{
  clock_delay(x->x_clock_metro, x->x_metro_time);
  x->x_started = 1;
}

static void prvu_tilde_float(t_prvu_tilde *x, t_floatarg f)
{
  if(f == 0.0)
  {
    clock_unset(x->x_clock_metro);
    x->x_started = 0;
  }
  else
  {
    clock_delay(x->x_clock_metro, x->x_metro_time);
    x->x_started = 1;
  }
}

static void prvu_tilde_t_release(t_prvu_tilde *x, t_floatarg release_time)
{
  if(release_time <= 5.0f)
    release_time = 5.0f;
  x->x_release_time = release_time;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
}

static void prvu_tilde_t_metro(t_prvu_tilde *x, t_floatarg metro_time)
{
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  x->x_metro_time = metro_time;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
  x->x_rcp = 1.0f/(x->x_sr*(t_float)x->x_metro_time);
}

static void prvu_tilde_t_hold(t_prvu_tilde *x, t_floatarg hold_time)
{
  if(hold_time <= 5.0f)
    hold_time = 5.0f;
  x->x_hold_time = hold_time;
}

static void prvu_tilde_threshold(t_prvu_tilde *x, t_floatarg thresh)
{
  x->x_threshold_over = thresh;
}

static t_int *prvu_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_prvu_tilde *x = (t_prvu_tilde *)(w[2]);
  int n = (int)(w[3]);
  t_float peak = x->x_cur_peak, power, sum=x->x_sum_rms;
  int i;
  
  if(x->x_started)
  {
    for(i=0; i<n; i++)
    {
      power = in[i]*in[i];
      if(power > peak)
        peak = power;
      sum += power;
    }
    x->x_cur_peak = peak;
    x->x_sum_rms = sum;
  }
  return(w+4);
}

static void prvu_tilde_dsp(t_prvu_tilde *x, t_signal **sp)
{
  x->x_sr = 0.001*(t_float)sp[0]->s_sr;
  x->x_rcp = 1.0f/(x->x_sr*x->x_metro_time);
  dsp_add(prvu_tilde_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void prvu_tilde_tick_hold(t_prvu_tilde *x)
{
  x->x_hold = 0;
  x->x_hold_peak = x->x_old_peak;
}

static void prvu_tilde_tick_metro(t_prvu_tilde *x)
{
  t_float dbr, dbp, cur_rms, c1=x->x_c1;
  
  x->x_old_peak *= c1;
  /* NAN protect */
  if(IEM_DENORMAL(x->x_old_peak))
    x->x_old_peak = 0.0f;
  
  if(x->x_cur_peak > x->x_old_peak)
    x->x_old_peak = x->x_cur_peak;
  if(x->x_old_peak > x->x_hold_peak)
  {
    x->x_hold = 1;
    x->x_hold_peak = x->x_old_peak;
    clock_delay(x->x_clock_hold, x->x_hold_time);
  }
  if(!x->x_hold)
    x->x_hold_peak = x->x_old_peak;
  if(x->x_hold_peak <= 0.0000000001f)
    dbp = -99.9f;
  else if(x->x_hold_peak > 1000000.0f)
  {
    dbp = 60.0f;
    x->x_hold_peak = 1000000.0f;
    x->x_old_peak = 1000000.0f;
  }
  else
    dbp = 4.3429448195f*log(x->x_hold_peak);
  x->x_cur_peak = 0.0f;
  if(dbp >= x->x_threshold_over)
    x->x_overflow_counter++;
  x->x_at[1].a_w.w_float = dbp;
  x->x_at[2].a_w.w_float = (t_float)x->x_overflow_counter;
  
  cur_rms = (1.0f - c1)*x->x_sum_rms*x->x_rcp + c1*x->x_old_rms;
  /* NAN protect */
  if(IEM_DENORMAL(cur_rms))
    cur_rms = 0.0f;
  
  if(cur_rms <= 0.0000000001f)
    dbr = -99.9f;
  else if(cur_rms > 1000000.0f)
  {
    dbr = 60.0f;
    x->x_old_rms = 1000000.0f;
  }
  else
    dbr = 4.3429448195f*log(cur_rms);
  x->x_sum_rms = 0.0f;
  x->x_old_rms = cur_rms;
  x->x_at[0].a_w.w_float = dbr;
  outlet_list(x->x_obj.ob_outlet, &s_list, 3, x->x_at);
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void prvu_tilde_ff(t_prvu_tilde *x)
{
  clock_free(x->x_clock_metro);
  clock_free(x->x_clock_hold);
}

static void *prvu_tilde_new(t_floatarg metro_time, t_floatarg hold_time,
                         t_floatarg release_time, t_floatarg threshold)
{
  t_prvu_tilde *x;
  t_float t;
  int i;
  
  x = (t_prvu_tilde *)pd_new(prvu_tilde_class);
  if(metro_time <= 0.0f)
    metro_time = 300.0f;
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  if(release_time <= 0.0f)
    release_time = 300.0f;
  if(release_time <= 5.0f)
    release_time = 5.0f;
  if(hold_time <= 0.0f)
    hold_time = 1000.0f;
  if(hold_time <= 5.0f)
    hold_time = 5.0f;
  if(threshold == 0.0f)
    threshold = -0.01f;
  x->x_metro_time = metro_time;
  x->x_release_time = release_time;
  x->x_hold_time = hold_time;
  x->x_threshold_over = threshold;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
  x->x_cur_peak = 0.0f;
  x->x_old_peak = 0.0f;
  x->x_hold_peak = 0.0f;
  x->x_hold = 0;
  x->x_sum_rms = 0.0f;
  x->x_old_rms = 0.0f;
  x->x_sr = 44.1f;
  x->x_rcp = 1.0f/(x->x_sr*x->x_metro_time);
  x->x_overflow_counter = 0;
  x->x_clock_metro = clock_new(x, (t_method)prvu_tilde_tick_metro);
  x->x_clock_hold = clock_new(x, (t_method)prvu_tilde_tick_hold);
  x->x_started = 1;
  outlet_new(&x->x_obj, &s_list);
  x->x_at[0].a_type = A_FLOAT;
  x->x_at[1].a_type = A_FLOAT;
  x->x_at[2].a_type = A_FLOAT;
  x->x_msi = 0.0f;
  return(x);
}

void prvu_tilde_setup(void)
{
  prvu_tilde_class = class_new(gensym("prvu~"), (t_newmethod)prvu_tilde_new,
    (t_method)prvu_tilde_ff, sizeof(t_prvu_tilde), 0,
    A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(prvu_tilde_class, t_prvu_tilde, x_msi);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_dsp, gensym("dsp"), 0);
  class_addfloat(prvu_tilde_class, prvu_tilde_float);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_reset, gensym("reset"), 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_start, gensym("start"), 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_stop, gensym("stop"), 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_t_release, gensym("t_release"), A_FLOAT, 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_t_metro, gensym("t_metro"), A_FLOAT, 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_t_hold, gensym("t_hold"), A_FLOAT, 0);
  class_addmethod(prvu_tilde_class, (t_method)prvu_tilde_threshold, gensym("threshold"), A_FLOAT, 0);
//  class_sethelpsymbol(prvu_tilde_class, gensym("iemhelp/help-prvu~"));
}

--- NEW FILE: db2v.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* -------- db2v - a techn. dB to rms-value converter. --------- */

static t_class *db2v_class;

t_float db2v(t_float f)
{
  return (f <= -199.9 ? 0 : exp(0.11512925465 * f));
}

static void db2v_float(t_object *x, t_floatarg f)
{
  outlet_float(x->ob_outlet, db2v(f));
}

static void *db2v_new(void)
{
  t_object *x = (t_object *)pd_new(db2v_class);
  outlet_new(x, &s_float);
  return (x);
}

void db2v_setup(void)
{
  db2v_class = class_new(gensym("db2v"), db2v_new, 0,
    sizeof(t_object), 0, 0);
  class_addfloat(db2v_class, (t_method)db2v_float);
//  class_sethelpsymbol(db2v_class, gensym("iemhelp/help-db2v"));
}

--- NEW FILE: para_bp2~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>


/* ---------- para_bp2~ - parametric bandpass 2. order ----------- */

typedef struct _para_bp2_tilde
{
  t_object x_obj;
  t_float  wn1;
  t_float  wn2;
  t_float  a0;
  t_float  a1;
  t_float  a2;
  t_float  b1;
  t_float  b2;
  t_float  sr;
  t_float  cur_f;
  t_float  cur_l;
  t_float  cur_a;
  t_float  cur_g;
  t_float  delta_f;
  t_float  delta_a;
  t_float  delta_g;
  t_float  end_f;
  t_float  end_a;
  t_float  end_g;
  t_float  ticks_per_interpol_time;
  t_float  rcp_ticks;
  t_float  interpol_time;
  int      ticks;
  int      counter_f;
  int      counter_a;
  int      counter_g;
  int      event_mask;
  void     *x_debug_outlet;
  t_atom   x_at[5];
  t_float  x_msi;
} t_para_bp2_tilde;

t_class *para_bp2_tilde_class;

static void para_bp2_tilde_calc(t_para_bp2_tilde *x)
{
  t_float l, al, gal, l2, rcp;
  
  l = x->cur_l;
  l2 = l*l + 1.0f;
  al = l*x->cur_a;
  gal = al*x->cur_g;
  rcp = 1.0f/(al + l2);
  x->a0 = rcp*(l2 + gal);
  x->a1 = rcp*2.0f*(2.0f - l2);
  x->a2 = rcp*(l2 - gal);
  x->b1 = -x->a1;
  x->b2 = rcp*(al - l2);
}

static void para_bp2_tilde_dsp_tick(t_para_bp2_tilde *x)
{
  if(x->event_mask)
  {
    t_float discriminant;
    
    if(x->counter_f)
    {
      t_float l, si, co;
      
      if(x->counter_f <= 1)
      {
        x->cur_f = x->end_f;
        x->counter_f = 0;
        x->event_mask &= 6;/*set event_mask_bit 0 = 0*/
      }
      else
      {
        x->counter_f--;
        x->cur_f *= x->delta_f;
      }
      l = x->cur_f * x->sr;
      if(l < 1.0e-20f)
        x->cur_l = 1.0e20f;
      else if(l > 1.57079632f)
        x->cur_l = 0.0f;
      else
      {
        si = sin(l);
        co = cos(l);
        x->cur_l = co/si;
      }
    }
    if(x->counter_a)
    {
      if(x->counter_a <= 1)
      {
        x->cur_a = x->end_a;
        x->counter_a = 0;
        x->event_mask &= 5;/*set event_mask_bit 1 = 0*/
      }
      else
      {
        x->counter_a--;
        x->cur_a *= x->delta_a;
      }
    }
    if(x->counter_g)
    {
      if(x->counter_g <= 1)
      {
        x->cur_g = x->end_g;
        x->counter_g = 0;
        x->event_mask &= 3;/*set event_mask_bit 2 = 0*/
      }
      else
      {
        x->counter_g--;
        x->cur_g *= x->delta_g;
      }
    }
    
    para_bp2_tilde_calc(x);
    
    /* stability check */
    
    discriminant = x->b1 * x->b1 + 4.0f * x->b2;
    if(x->b1 <= -1.9999996f)
      x->b1 = -1.9999996f;
    else if(x->b1 >= 1.9999996f)
      x->b1 = 1.9999996f;
    
    if(x->b2 <= -0.9999998f)
      x->b2 = -0.9999998f;
    else if(x->b2 >= 0.9999998f)
      x->b2 = 0.9999998f;
    
    if(discriminant >= 0.0f)
    {
      if(0.9999998f - x->b1 - x->b2 < 0.0f)
        x->b2 = 0.9999998f - x->b1;
      if(0.9999998f + x->b1 - x->b2 < 0.0f)
        x->b2 = 0.9999998f + x->b1;
    }
  }
}

static t_int *para_bp2_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_para_bp2_tilde *x = (t_para_bp2_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn0, wn1=x->wn1, wn2=x->wn2;
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  para_bp2_tilde_dsp_tick(x);
  for(i=0; i<n; i++)
  {
    wn0 = *in++ + b1*wn1 + b2*wn2;
    *out++ = a0*wn0 + a1*wn1 + a2*wn2;
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->wn1 = wn1;
  x->wn2 = wn2;
  return(w+5);
}
/*   yn0 = *out;
xn0 = *in;
*************
yn0 = a0*xn0 + a1*xn1 + a2*xn2 + b1*yn1 + b2*yn2;
yn2 = yn1;
yn1 = yn0;
xn2 = xn1;
xn1 = xn0;
*************************
y/x = (a0 + a1*z-1 + a2*z-2)/(1 - b1*z-1 - b2*z-2);*/

static t_int *para_bp2_tilde_perf8(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_para_bp2_tilde *x = (t_para_bp2_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn[10];
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  para_bp2_tilde_dsp_tick(x);
  wn[0] = x->wn2;
  wn[1] = x->wn1;
  for(i=0; i<n; i+=8, in+=8, out+=8)
  {
    wn[2] = in[0] + b1*wn[1] + b2*wn[0];
    out[0] = a0*wn[2] + a1*wn[1] + a2*wn[0];
    wn[3] = in[1] + b1*wn[2] + b2*wn[1];
    out[1] = a0*wn[3] + a1*wn[2] + a2*wn[1];
    wn[4] = in[2] + b1*wn[3] + b2*wn[2];
    out[2] = a0*wn[4] + a1*wn[3] + a2*wn[2];
    wn[5] = in[3] + b1*wn[4] + b2*wn[3];
    out[3] = a0*wn[5] + a1*wn[4] + a2*wn[3];
    wn[6] = in[4] + b1*wn[5] + b2*wn[4];
    out[4] = a0*wn[6] + a1*wn[5] + a2*wn[4];
    wn[7] = in[5] + b1*wn[6] + b2*wn[5];
    out[5] = a0*wn[7] + a1*wn[6] + a2*wn[5];
    wn[8] = in[6] + b1*wn[7] + b2*wn[6];
    out[6] = a0*wn[8] + a1*wn[7] + a2*wn[6];
    wn[9] = in[7] + b1*wn[8] + b2*wn[7];
    out[7] = a0*wn[9] + a1*wn[8] + a2*wn[7];
    wn[0] = wn[8];
    wn[1] = wn[9];
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn[0]))
    wn[0] = 0.0f;
  if(IEM_DENORMAL(wn[1]))
    wn[1] = 0.0f;
  
  x->wn1 = wn[1];
  x->wn2 = wn[0];
  return(w+5);
}

static void para_bp2_tilde_ft4(t_para_bp2_tilde *x, t_floatarg t)
{
  int i = (int)((x->ticks_per_interpol_time)*t);
  
  x->interpol_time = t;
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
}

static void para_bp2_tilde_ft3(t_para_bp2_tilde *x, t_floatarg l)
{
  t_float g = exp(0.11512925465 * l);
  
  if(g != x->cur_g)
  {
    x->end_g = g;
    x->counter_g = x->ticks;
    x->delta_g = exp(log(g/x->cur_g)*x->rcp_ticks);
    x->event_mask |= 4;/*set event_mask_bit 2 = 1*/
  }
}

static void para_bp2_tilde_ft2(t_para_bp2_tilde *x, t_floatarg q)
{
  t_float a;
  
  if(q <= 0.0f)
    q = 0.000001f;
  a = 1.0f/q;
  if(a != x->cur_a)
  {
    x->end_a = a;
    x->counter_a = x->ticks;
    x->delta_a = exp(log(a/x->cur_a)*x->rcp_ticks);
    x->event_mask |= 2;/*set event_mask_bit 1 = 1*/
  }
}

static void para_bp2_tilde_ft1(t_para_bp2_tilde *x, t_floatarg f)
{
  if(f <= 0.0f)
    f = 0.000001f;
  if(f != x->cur_f)
  {
    x->end_f = f;
    x->counter_f = x->ticks;
    x->delta_f = exp(log(f/x->cur_f)*x->rcp_ticks);
    x->event_mask |= 1;/*set event_mask_bit 0 = 1*/
  }
}

static void para_bp2_tilde_print(t_para_bp2_tilde *x)
{
  //  post("fb1 = %g, fb2 = %g, ff1 = %g, ff2 = %g, ff3 = %g", x->b1, x->b2, x->a0, x->a1, x->a2);
  x->x_at[0].a_w.w_float = x->b1;
  x->x_at[1].a_w.w_float = x->b2;
  x->x_at[2].a_w.w_float = x->a0;
  x->x_at[3].a_w.w_float = x->a1;
  x->x_at[4].a_w.w_float = x->a2;
  outlet_list(x->x_debug_outlet, &s_list, 5, x->x_at);
}

static void para_bp2_tilde_dsp(t_para_bp2_tilde *x, t_signal **sp)
{
  t_float si, co, f;
  int i, n=(int)sp[0]->s_n;
  
  x->sr = 3.14159265358979323846f / (t_float)(sp[0]->s_sr);
  x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  f = x->cur_f * x->sr;
  if(f < 1.0e-20f)
    x->cur_l = 1.0e20f;
  else if(f > 1.57079632f)
    x->cur_l = 0.0f;
  else
  {
    si = sin(f);
    co = cos(f);
    x->cur_l = co/si;
  }
  if(n&7)
    dsp_add(para_bp2_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
  else
    dsp_add(para_bp2_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}

static void *para_bp2_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
  t_para_bp2_tilde *x = (t_para_bp2_tilde *)pd_new(para_bp2_tilde_class);
  int i;
  t_float si, co, f=0.0f, q=1.0f, l=0.0f, interpol=0.0f;
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft3"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft4"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_debug_outlet = outlet_new(&x->x_obj, &s_list);
  x->x_msi = 0;
  
  x->x_at[0].a_type = A_FLOAT;
  x->x_at[1].a_type = A_FLOAT;
  x->x_at[2].a_type = A_FLOAT;
  x->x_at[3].a_type = A_FLOAT;
  x->x_at[4].a_type = A_FLOAT;
  
  x->event_mask = 1;
  x->counter_f = 1;
  x->counter_a = 0;
  x->counter_g = 0;
  x->delta_f = 0.0f;
  x->delta_a = 0.0f;
  x->delta_g = 0.0f;
  x->interpol_time = 500.0f;
  x->wn1 = 0.0f;
  x->wn2 = 0.0f;
  x->a0 = 0.0f;
  x->a1 = 0.0f;
  x->a2 = 0.0f;
  x->b1 = 0.0f;
  x->b2 = 0.0f;
  x->sr = 3.14159265358979323846f / 44100.0f;
  x->cur_a = 1.0f;
  if((argc == 4)&&IS_A_FLOAT(argv,3)&&IS_A_FLOAT(argv,2)&&IS_A_FLOAT(argv,1)&&IS_A_FLOAT(argv,0))
  {
    f = (t_float)atom_getfloatarg(0, argc, argv);
    q = (t_float)atom_getfloatarg(1, argc, argv);
    l = (t_float)atom_getfloatarg(2, argc, argv);
    interpol = (t_float)atom_getfloatarg(3, argc, argv);
  }
  if(f <= 0.0f)
    f = 0.000001f;
  x->cur_f = f;
  f *= x->sr;
  if(f < 1.0e-20f)
    x->cur_l = 1.0e20f;
  else if(f > 1.57079632f)
    x->cur_l = 0.0f;
  else
  {
    si = sin(f);
    co = cos(f);
    x->cur_l = co/si;
  }
  if(q <= 0.0f)
    q = 0.000001f;
  x->cur_a = 1.0f/q;
  x->cur_g = exp(0.11512925465 * l);
  if(interpol <= 0.0f)
    interpol = 0.0f;
  x->interpol_time = interpol;
  x->ticks_per_interpol_time = 0.5f;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  x->end_f = x->cur_f;
  x->end_a = x->cur_a;
  x->end_g = x->cur_g;
  return(x);
}

void para_bp2_tilde_setup(void)
{
  para_bp2_tilde_class = class_new(gensym("para_bp2~"), (t_newmethod)para_bp2_tilde_new,
        0, sizeof(t_para_bp2_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(para_bp2_tilde_class, t_para_bp2_tilde, x_msi);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_ft3, gensym("ft3"), A_FLOAT, 0);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_ft4, gensym("ft4"), A_FLOAT, 0);
  class_addmethod(para_bp2_tilde_class, (t_method)para_bp2_tilde_print, gensym("print"), 0);
//  class_sethelpsymbol(para_bp2_tilde_class, gensym("iemhelp/help-para_bp2~"));
}

--- NEW FILE: iem_sqrt4~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

#define IEMSQRT4TAB1SIZE 256
#define IEMSQRT4TAB2SIZE 1024

/* ------------------------ iem_sqrt4~ ----------------------------- */

t_float *iem_sqrt4_tilde_exptab=(t_float *)0L;
t_float *iem_sqrt4_tilde_mantissatab=(t_float *)0L;

static t_class *iem_sqrt4_tilde_class;

typedef struct _iem_sqrt4_tilde
{
  t_object  x_obj;
  t_float   x_msi;
} t_iem_sqrt4_tilde;

static t_int *iem_sqrt4_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_int n = (t_int)(w[3])/4;
  
  while(n--)
  {
    t_float f = *in;
    t_float g, h;
    long l = *(long *)(in);
    
    if(f < 0.0f)
    {
      *out++ = 0.0f;
      *out++ = 0.0f;
      *out++ = 0.0f;
      *out++ = 0.0f;
    }
    else
    {
      g = iem_sqrt4_tilde_exptab[(l >> 23) & 0xff] * iem_sqrt4_tilde_mantissatab[(l >> 13) & 0x3ff];
      h = f * (1.5f * g - 0.5f * g * g * g * f);
      *out++ = h;
      *out++ = h;
      *out++ = h;
      *out++ = h;
    }
    in += 4;
  }
  return(w+4);
}

static void iem_sqrt4_tilde_dsp(t_iem_sqrt4_tilde *x, t_signal **sp)
{
  dsp_add(iem_sqrt4_tilde_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

static void iem_sqrt4_tilde_maketable(void)
{
  int i;
  t_float f;
  long l;
  
  if(!iem_sqrt4_tilde_exptab)
  {
    iem_sqrt4_tilde_exptab = (t_float *)getbytes(sizeof(t_float) * IEMSQRT4TAB1SIZE);
    for(i=0; i<IEMSQRT4TAB1SIZE; i++)
    {
      l = (i ? (i == IEMSQRT4TAB1SIZE-1 ? IEMSQRT4TAB1SIZE-2 : i) : 1)<< 23;
      *(long *)(&f) = l;
      iem_sqrt4_tilde_exptab[i] = 1.0f/sqrt(f); 
    }
  }
  if(!iem_sqrt4_tilde_mantissatab)
  {
    iem_sqrt4_tilde_mantissatab = (t_float *)getbytes(sizeof(t_float) * IEMSQRT4TAB2SIZE);
    for(i=0; i<IEMSQRT4TAB2SIZE; i++)
    {
      f = 1.0f + (1.0f/(t_float)IEMSQRT4TAB2SIZE) * (t_float)i;
      iem_sqrt4_tilde_mantissatab[i] = 1.0f/sqrt(f);  
    }
  }
}

static void *iem_sqrt4_tilde_new(void)
{
  t_iem_sqrt4_tilde *x = (t_iem_sqrt4_tilde *)pd_new(iem_sqrt4_tilde_class);
  
  outlet_new(&x->x_obj, gensym("signal"));
  x->x_msi = 0;
  return (x);
}

void iem_sqrt4_tilde_setup(void)
{
  iem_sqrt4_tilde_class = class_new(gensym("iem_sqrt4~"), (t_newmethod)iem_sqrt4_tilde_new, 0,
    sizeof(t_iem_sqrt4_tilde), 0, 0);
  CLASS_MAINSIGNALIN(iem_sqrt4_tilde_class, t_iem_sqrt4_tilde, x_msi);
  class_addmethod(iem_sqrt4_tilde_class, (t_method)iem_sqrt4_tilde_dsp, gensym("dsp"), 0);
  iem_sqrt4_tilde_maketable();
//  class_sethelpsymbol(iem_sqrt4_tilde_class, gensym("iemhelp/help-iem_sqrt4~"));
}

--- NEW FILE: mov_avrg_kern~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"


/* -- mov_avrg_kern~ - kernel for a moving-average-filter with IIR - */

typedef struct _mov_avrg_kern_tilde
{
  t_object x_obj;
  double   x_wn1;
  double   x_a0;
  double   x_sr;
  double   x_mstime;
  int      x_nsamps;
  int      x_counter;
  t_float  x_msi;
} t_mov_avrg_kern_tilde;

t_class *mov_avrg_kern_tilde_class;

static t_int *mov_avrg_kern_tilde_perform(t_int *w)
{
  t_float *in_direct = (t_float *)(w[1]);
  t_float *in_delayed = (t_float *)(w[2]);
  t_float *out = (t_float *)(w[3]);
  t_mov_avrg_kern_tilde *x = (t_mov_avrg_kern_tilde *)(w[4]);
  int i, n = (int)(w[5]);
  double wn0, wn1=x->x_wn1, a0=x->x_a0;
  
  if(x->x_counter)
  {
    int counter = x->x_counter;
    
    if(counter >= n)
    {
      x->x_counter = counter - n;
      for(i=0; i<n; i++)
      {
        wn0 = wn1 + a0*(double)(*in_direct++);
        *out++ = (t_float)wn0;
        wn1 = wn0;
      }
    }
    else
    {
      x->x_counter = 0;
      for(i=0; i<counter; i++)
      {
        wn0 = wn1 + a0*(double)(*in_direct++);
        *out++ = (t_float)wn0;
        wn1 = wn0;
      }
      for(i=counter; i<n; i++)
      {
        wn0 = wn1 + a0*(double)(*in_direct++ - *in_delayed++);
        *out++ = (t_float)wn0;
        wn1 = wn0;
      }
    }
  }
  else
  {
    for(i=0; i<n; i++)
    {
      wn0 = wn1 + a0*(double)(*in_direct++ - *in_delayed++);
      *out++ = (t_float)wn0;
      wn1 = wn0;
    }
  }
  x->x_wn1 = wn1;
  return(w+6);
}

static void mov_avrg_kern_tilde_ft1(t_mov_avrg_kern_tilde *x, t_floatarg mstime)
{
  if(mstime < 0.04)
    mstime = 0.04;
  x->x_mstime = (double)mstime;
  x->x_nsamps = (int)(x->x_sr * x->x_mstime);
  x->x_counter = x->x_nsamps;
  x->x_wn1 = 0.0;
  x->x_a0 = 1.0/(double)(x->x_nsamps);
}

static void mov_avrg_kern_tilde_reset(t_mov_avrg_kern_tilde *x)
{
  x->x_counter = x->x_nsamps;
  x->x_wn1 = 0.0;
}

static void mov_avrg_kern_tilde_dsp(t_mov_avrg_kern_tilde *x, t_signal **sp)
{
  x->x_sr = 0.001*(double)(sp[0]->s_sr);
  x->x_nsamps = (int)(x->x_sr * x->x_mstime);
  x->x_counter = x->x_nsamps;
  x->x_wn1 = 0.0;
  x->x_a0 = 1.0/(double)(x->x_nsamps);
  dsp_add(mov_avrg_kern_tilde_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n);
}

static void *mov_avrg_kern_tilde_new(t_floatarg mstime)
{
  t_mov_avrg_kern_tilde *x = (t_mov_avrg_kern_tilde *)pd_new(mov_avrg_kern_tilde_class);
  
  if(mstime < 0.04)
    mstime = 0.04;
  x->x_mstime = (double)mstime;
  x->x_sr = 44.1;
  x->x_nsamps = (int)(x->x_sr * x->x_mstime);
  x->x_counter = x->x_nsamps;
  x->x_wn1 = 0.0;
  x->x_a0 = 1.0/(double)(x->x_nsamps);
  
  inlet_new(&x->x_obj,  &x->x_obj.ob_pd, &s_signal, &s_signal);
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0;
  return(x);
}

void mov_avrg_kern_tilde_setup(void)
{
  mov_avrg_kern_tilde_class = class_new(gensym("mov_avrg_kern~"), (t_newmethod)mov_avrg_kern_tilde_new,
        0, sizeof(t_mov_avrg_kern_tilde), 0, A_FLOAT, 0);
  CLASS_MAINSIGNALIN(mov_avrg_kern_tilde_class, t_mov_avrg_kern_tilde, x_msi);
  class_addmethod(mov_avrg_kern_tilde_class, (t_method)mov_avrg_kern_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(mov_avrg_kern_tilde_class, (t_method)mov_avrg_kern_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(mov_avrg_kern_tilde_class, (t_method)mov_avrg_kern_tilde_reset, gensym("reset"), 0);
}

--- NEW FILE: hml_shelf~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ---------- hml_shelf~ - high-middle-low-shelving filter ----------- */

typedef struct _hml_shelf_tilde
{
  t_object  x_obj;
  t_float   wn1;
  t_float   wn2;
  t_float   a0;
  t_float   a1;
  t_float   a2;
  t_float   b1;
  t_float   b2;
  t_float   sr;
  t_float   cur_lf;
  t_float   cur_hf;
  t_float   cur_lg;
  t_float   cur_mg;
  t_float   cur_hg;
  t_float   delta_lf;
  t_float   delta_hf;
  t_float   delta_lg;
  t_float   delta_mg;
  t_float   delta_hg;
  t_float   end_lf;
  t_float   end_hf;
  t_float   end_lg;
  t_float   end_mg;
  t_float   end_hg;
  t_float   ticks_per_interpol_time;
  t_float   rcp_ticks;
  t_float   interpol_time;
  int       ticks;
  int       counter_lf;
  int       counter_hf;
  int       counter_lg;
  int       counter_mg;
  int       counter_hg;
  int       event_mask;
  void      *x_debug_outlet;
  t_atom    x_at[5];
  t_float   x_msi;
} t_hml_shelf_tilde;

t_class *hml_shelf_tilde_class;

static void hml_shelf_tilde_calc(t_hml_shelf_tilde *x)
{
  t_float rf = x->cur_hf/x->cur_lf;
  t_float mf = x->cur_hf*x->cur_lf;
  t_float lg = x->cur_lg;
  t_float rcplg = 1.0f/lg;
  t_float mg = x->cur_mg;
  t_float rcpmg = 1.0f/mg;
  t_float hg = x->cur_hg;
  t_float rcphg = 1.0f/hg;
  t_float f = mf*x->sr;
  t_float l = cos(f)/sin(f);
  t_float k1 = rf*l;
  t_float k2 = l/rf;
  t_float k3 = l*l;
  t_float k4 = k3*hg;
  t_float k5 = k3*rcphg;
  t_float k6 = rcplg + k5;
  t_float k7 = rcpmg*k1 + k2*rcplg*rcphg*mg;
  t_float k8 = lg + k4;
  t_float k9 = mg*k1 + k2*lg*hg*rcpmg;
  t_float k10 = 1.0f/(k6 + k7);
  
  x->b2 = k10*(k7 - k6);
  x->b1 = k10*2.0f*(k5 - rcplg);
  x->a2 = k10*(k8 - k9);
  x->a1 = k10*2.0f*(lg - k4);
  x->a0 = k10*(k8 + k9);
}

/*
high- & low- shelving-filter:
L....sqrt(lowlevel);
rL...rsqrt(lowlevel);
M....sqrt(mediumlevel);
rM...rsqrt(mediumlevel);
H....sqrt(highlevel);
rH...rsqrt(highlevel);
V....sqrt(highfrequency/lowfrequency);
P....j*2*pi*f/(2*pi*V*lowfrequency);

Y/X = [M/(1/M)] * [(L/M + PV)/(M/L + PV)] * [(1 + HP/(VM))/(1 + MP/(VH))];
Y/X = (L + P*(M*V + L*H/(V*M)) + P*P*H) / (rL + P*(rM*V + rL*rH/(V*rM)) + P*P*rH);
  
hlshlv: lowlevel: ll; mediumlevel: lm; highlevel: hl; lowfrequency: fl; highfrequency: fh; samplerate: sr;
    
V = sqrt(fh/fl);
f = fl*V;
L = sqrt(ll);
rL = 1.0/L;
M = sqrt(lm);
rM = 1.0/M;
H = sqrt(lh);
rH = 1.0/H;
   
l = cot(f*3.14159265358979323846/sr);
k1 = V*l;
k2 = l/V;
l2 = l*l;
l3 = l2*H;
l4 = l2*rH;
m1 = k2*L*H*rM;
m2 = k2*rL*rH*M;
n1 = rL + l4;
n2 = rM*k1 + m2;
p1 = L + l3;
p2 = M*k1 + m1;
a012 = 1.0/(n1 + n2);
    
b2 = a012*(n2 - n1);
b1 = a012*2.0*(l4 - rL);
a2 = a012*(p1 - p2);
a1 = a012*2.0*(L - l3);
a0 = a012*(p1 + p2);

rf = sqrt(fh/fl);
mf = fl*rf;
L = sqrt(ll);
rL = 1.0/L;
M = sqrt(lm);
rM = 1.0/M;
H = sqrt(lh);
rH = 1.0/H;
                    
l = cot(fm*3.14159265358979323846/sr);
k1 = V*l;
k2 = l/V;
k3 = l*l;
k4 = k3*H;
k5 = k3*rH;
k6 = rL + k5;
k7 = rM*k1 + k2*rL*rH*M;
k8 = L + k4;
k9 = M*k1 + k2*L*H*rM;
k10 = 1.0/(k6 + k7);
                     
b2 = k10*(k7 - k6);
b1 = k10*2.0*(k5 - rL);
a2 = k10*(k8 - k9);
a1 = k10*2.0*(L - k4);
a0 = k10*(k8 + k9);
*/
                        

static void hml_shelf_tilde_dsp_tick(t_hml_shelf_tilde *x)
{
  if(x->event_mask)
  {
    t_float discriminant;
    
    if(x->counter_lg)
    {
      if(x->counter_lg <= 1)
      {
        x->cur_lg = x->end_lg;
        x->counter_lg = 0;
        x->event_mask &= 30;/*set event_mask_bit 0 = 0*/
      }
      else
      {
        x->counter_lg--;
        x->cur_lg *= x->delta_lg;
      }
    }
    if(x->counter_lf)
    {
      if(x->counter_lf <= 1)
      {
        x->cur_lf = x->end_lf;
        x->counter_lf = 0;
        x->event_mask &= 29;/*set event_mask_bit 1 = 0*/
      }
      else
      {
        x->counter_lf--;
        x->cur_lf *= x->delta_lf;
      }
    }
    if(x->counter_mg)
    {
      if(x->counter_mg <= 1)
      {
        x->cur_mg = x->end_mg;
        x->counter_mg = 0;
        x->event_mask &= 27;/*set event_mask_bit 2 = 0*/
      }
      else
      {
        x->counter_mg--;
        x->cur_mg *= x->delta_mg;
      }
    }
    if(x->counter_hf)
    {
      if(x->counter_hf <= 1)
      {
        x->cur_hf = x->end_hf;
        x->counter_hf = 0;
        x->event_mask &= 23;/*set event_mask_bit 3 = 0*/
      }
      else
      {
        x->counter_hf--;
        x->cur_hf *= x->delta_hf;
      }
    }
    if(x->counter_hg)
    {
      if(x->counter_hg <= 1)
      {
        x->cur_hg = x->end_hg;
        x->counter_hg = 0;
        x->event_mask &= 15;/*set event_mask_bit 4 = 0*/
      }
      else
      {
        x->counter_hg--;
        x->cur_hg *= x->delta_hg;
      }
    }
    hml_shelf_tilde_calc(x);
    
    /* stability check */
    
    discriminant = x->b1 * x->b1 + 4.0f * x->b2;
    if(x->b1 <= -1.9999996f)
      x->b1 = -1.9999996f;
    else if(x->b1 >= 1.9999996f)
      x->b1 = 1.9999996f;
    
    if(x->b2 <= -0.9999998f)
      x->b2 = -0.9999998f;
    else if(x->b2 >= 0.9999998f)
      x->b2 = 0.9999998f;
    
    if(discriminant >= 0.0f)
    {
      if(0.9999998f - x->b1 - x->b2 < 0.0f)
        x->b2 = 0.9999998f - x->b1;
      if(0.9999998f + x->b1 - x->b2 < 0.0f)
        x->b2 = 0.9999998f + x->b1;
    }
  }
}

static t_int *hml_shelf_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_hml_shelf_tilde *x = (t_hml_shelf_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn0, wn1=x->wn1, wn2=x->wn2;
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  hml_shelf_tilde_dsp_tick(x);
  for(i=0; i<n; i++)
  {
    wn0 = *in++ + b1*wn1 + b2*wn2;
    *out++ = a0*wn0 + a1*wn1 + a2*wn2;
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->wn1 = wn1;
  x->wn2 = wn2;
  return(w+5);
}

/*   yn0 = *out;
xn0 = *in;
*************
yn0 = a0*xn0 + a1*xn1 + a2*xn2 + b1*yn1 + b2*yn2;
yn2 = yn1;
yn1 = yn0;
xn2 = xn1;
xn1 = xn0;
*************************
y/x = (a0 + a1*z-1 + a2*z-2)/(1 - b1*z-1 - b2*z-2);
*/

static t_int *hml_shelf_tilde_perf8(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_hml_shelf_tilde *x = (t_hml_shelf_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float wn[10];
  t_float a0=x->a0, a1=x->a1, a2=x->a2;
  t_float b1=x->b1, b2=x->b2;
  
  hml_shelf_tilde_dsp_tick(x);
  wn[0] = x->wn2;
  wn[1] = x->wn1;
  for(i=0; i<n; i+=8, in+=8, out+=8)
  {
    wn[2] = in[0] + b1*wn[1] + b2*wn[0];
    out[0] = a0*wn[2] + a1*wn[1] + a2*wn[0];
    wn[3] = in[1] + b1*wn[2] + b2*wn[1];
    out[1] = a0*wn[3] + a1*wn[2] + a2*wn[1];
    wn[4] = in[2] + b1*wn[3] + b2*wn[2];
    out[2] = a0*wn[4] + a1*wn[3] + a2*wn[2];
    wn[5] = in[3] + b1*wn[4] + b2*wn[3];
    out[3] = a0*wn[5] + a1*wn[4] + a2*wn[3];
    wn[6] = in[4] + b1*wn[5] + b2*wn[4];
    out[4] = a0*wn[6] + a1*wn[5] + a2*wn[4];
    wn[7] = in[5] + b1*wn[6] + b2*wn[5];
    out[5] = a0*wn[7] + a1*wn[6] + a2*wn[5];
    wn[8] = in[6] + b1*wn[7] + b2*wn[6];
    out[6] = a0*wn[8] + a1*wn[7] + a2*wn[6];
    wn[9] = in[7] + b1*wn[8] + b2*wn[7];
    out[7] = a0*wn[9] + a1*wn[8] + a2*wn[7];
    wn[0] = wn[8];
    wn[1] = wn[9];
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn[0]))
    wn[0] = 0.0f;
  if(IEM_DENORMAL(wn[1]))
    wn[1] = 0.0f;
  
  x->wn1 = wn[1];
  x->wn2 = wn[0];
  return(w+5);
}

static void hml_shelf_tilde_ft6(t_hml_shelf_tilde *x, t_floatarg t)
{
  int i = (int)((x->ticks_per_interpol_time)*t);
  
  x->interpol_time = t;
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
}

static void hml_shelf_tilde_ft5(t_hml_shelf_tilde *x, t_floatarg hl)
{
  t_float hg = exp(0.057564627325 * hl);
  
  if(hg != x->cur_hg)
  {
    x->end_hg = hg;
    x->counter_hg = x->ticks;
    x->delta_hg = exp(log(hg/x->cur_hg)*x->rcp_ticks);
    x->event_mask |= 16;/*set event_mask_bit 4 = 1*/
  }
}

static void hml_shelf_tilde_ft4(t_hml_shelf_tilde *x, t_floatarg hf)
{
  t_float sqhf;
  
  if(hf <= 0.0f)
    hf = 0.000001f;
  sqhf = sqrt(hf);
  if(sqhf != x->cur_hf)
  {
    x->end_hf = sqhf;
    x->counter_hf = x->ticks;
    x->delta_hf = exp(log(sqhf/x->cur_hf)*x->rcp_ticks);
    x->event_mask |= 8;/*set event_mask_bit 3 = 1*/
  }
}

static void hml_shelf_tilde_ft3(t_hml_shelf_tilde *x, t_floatarg ml)
{
  t_float mg = exp(0.057564627325 * ml);
  
  if(mg != x->cur_mg)
  {
    x->end_mg = mg;
    x->counter_mg = x->ticks;
    x->delta_mg = exp(log(mg/x->cur_mg)*x->rcp_ticks);
    x->event_mask |= 4;/*set event_mask_bit 2 = 1*/
  }
}

static void hml_shelf_tilde_ft2(t_hml_shelf_tilde *x, t_floatarg lf)
{
  t_float sqlf;
  
  if(lf <= 0.0f)
    lf = 0.000001f;
  sqlf = sqrt(lf);
  if(sqlf != x->cur_lf)
  {
    x->end_lf = sqlf;
    x->counter_lf = x->ticks;
    x->delta_lf = exp(log(sqlf/x->cur_lf)*x->rcp_ticks);
    x->event_mask |= 2;/*set event_mask_bit 1 = 1*/
  }
}

static void hml_shelf_tilde_ft1(t_hml_shelf_tilde *x, t_floatarg ll)
{
  t_float lg = exp(0.057564627325 * ll);
  
  if(lg != x->cur_lg)
  {
    x->end_lg = lg;
    x->counter_lg = x->ticks;
    x->delta_lg = exp(log(lg/x->cur_lg)*x->rcp_ticks);
    x->event_mask |= 1;/*set event_mask_bit 0 = 1*/
  }
}

static void hml_shelf_tilde_print(t_hml_shelf_tilde *x)
{
  //  post("fb1 = %g, fb2 = %g, ff1 = %g, ff2 = %g, ff3 = %g", x->b1, x->b2, x->a0, x->a1, x->a2);
  x->x_at[0].a_w.w_float = x->b1;
  x->x_at[1].a_w.w_float = x->b2;
  x->x_at[2].a_w.w_float = x->a0;
  x->x_at[3].a_w.w_float = x->a1;
  x->x_at[4].a_w.w_float = x->a2;
  outlet_list(x->x_debug_outlet, &s_list, 5, x->x_at);
}

static void hml_shelf_tilde_dsp(t_hml_shelf_tilde *x, t_signal **sp)
{
  int i, n=(int)sp[0]->s_n;
  
  x->sr = 3.14159265358979323846f / (t_float)(sp[0]->s_sr);
  x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  if(n&7)
    dsp_add(hml_shelf_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
  else
    dsp_add(hml_shelf_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}

static void *hml_shelf_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
  t_hml_shelf_tilde *x = (t_hml_shelf_tilde *)pd_new(hml_shelf_tilde_class);
  int i;
  t_float lf=200.0f, hf=2000.0f, ll=0.0f, ml=0.0f, hl=0.0f, interpol=0.0f;
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft3"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft4"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft5"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft6"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_debug_outlet = outlet_new(&x->x_obj, &s_list);
  x->x_msi = 0;
  
  x->x_at[0].a_type = A_FLOAT;
  x->x_at[1].a_type = A_FLOAT;
  x->x_at[2].a_type = A_FLOAT;
  x->x_at[3].a_type = A_FLOAT;
  x->x_at[4].a_type = A_FLOAT;
  
  x->event_mask = 2;
  x->counter_lg = 0;
  x->counter_lf = 1;
  x->counter_mg = 0;
  x->counter_hf = 0;
  x->counter_hg = 0;
  x->delta_lg = 0.0f;
  x->delta_lf = 0.0f;
  x->delta_mg = 0.0f;
  x->delta_hf = 0.0f;
  x->delta_hg = 0.0f;
  x->interpol_time = 0.0f;
  x->wn1 = 0.0f;
  x->wn2 = 0.0f;
  x->a0 = 0.0f;
  x->a1 = 0.0f;
  x->a2 = 0.0f;
  x->b1 = 0.0f;
  x->b2 = 0.0f;
  x->sr = 3.14159265358979323846f / 44100.0f;
  if((argc == 6)&&IS_A_FLOAT(argv,5)&&IS_A_FLOAT(argv,4)&&IS_A_FLOAT(argv,3)
    &&IS_A_FLOAT(argv,2)&&IS_A_FLOAT(argv,1)&&IS_A_FLOAT(argv,0))
  {
    ll = (t_float)atom_getfloatarg(0, argc, argv);
    lf = (t_float)atom_getfloatarg(1, argc, argv);
    ml = (t_float)atom_getfloatarg(2, argc, argv);
    hf = (t_float)atom_getfloatarg(3, argc, argv);
    hl = (t_float)atom_getfloatarg(4, argc, argv);
    interpol = (t_float)atom_getfloatarg(5, argc, argv);
  }
  x->cur_lg = exp(0.057564627325 * ll);
  x->cur_mg = exp(0.057564627325 * ml);
  x->cur_hg = exp(0.057564627325 * hl);
  if(lf <= 0.0f)
    lf = 0.000001f;
  if(hf <= 0.0f)
    hf = 0.000001f;
  x->cur_lf = sqrt(lf);
  x->cur_hf = sqrt(hf);
  if(interpol < 0.0f)
    interpol = 0.0f;
  x->interpol_time = interpol;
  x->ticks_per_interpol_time = 0.5f;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  x->end_lf = x->cur_lf;
  x->end_hf = x->cur_hf;
  x->end_lg = x->cur_lg;
  x->end_mg = x->cur_mg;
  x->end_hg = x->cur_hg;
  return(x);
}

void hml_shelf_tilde_setup(void)
{
  hml_shelf_tilde_class = class_new(gensym("hml_shelf~"), (t_newmethod)hml_shelf_tilde_new,
    0, sizeof(t_hml_shelf_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(hml_shelf_tilde_class, t_hml_shelf_tilde, x_msi);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft3, gensym("ft3"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft4, gensym("ft4"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft5, gensym("ft5"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_ft6, gensym("ft6"), A_FLOAT, 0);
  class_addmethod(hml_shelf_tilde_class, (t_method)hml_shelf_tilde_print, gensym("print"), 0);
//  class_sethelpsymbol(hml_shelf_tilde_class, gensym("iemhelp/help-hml_shelf~"));
}

--- NEW FILE: peakenv~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ---------------- peakenv~ - simple peak-envelope-converter. ----------------- */

typedef struct _peakenv_tilde
{
  t_object x_obj;
  t_float  x_sr;
  t_float  x_old_peak;
  t_float  x_c1;
  t_float  x_releasetime;
  t_float  x_msi;
} t_peakenv_tilde;

t_class *peakenv_tilde_class;

static void peakenv_tilde_reset(t_peakenv_tilde *x)
{
  x->x_old_peak = 0.0f;
}

static void peakenv_tilde_ft1(t_peakenv_tilde *x, t_floatarg f)/* release-time in ms */
{
  if(f < 0.0f)
    f = 0.0f;
  x->x_releasetime = f;
  x->x_c1 = exp(-1.0/(x->x_sr*0.001*x->x_releasetime));
}

static t_int *peakenv_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_peakenv_tilde *x = (t_peakenv_tilde *)(w[3]);
  int n = (int)(w[4]);
  t_float peak = x->x_old_peak;
  t_float c1 = x->x_c1;
  t_float absolute;
  int i;
  
  for(i=0; i<n; i++)
  {
    absolute = fabs(*in++);
    peak *= c1;
    if(absolute > peak)
      peak = absolute;
    *out++ = peak;
  }
  /* NAN protect */
  if(IEM_DENORMAL(peak))
    peak = 0.0f;
  x->x_old_peak = peak;
  return(w+5);
}

static void peakenv_tilde_dsp(t_peakenv_tilde *x, t_signal **sp)
{
  x->x_sr = (t_float)sp[0]->s_sr;
  peakenv_tilde_ft1(x, x->x_releasetime);
  dsp_add(peakenv_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, sp[0]->s_n);
}

static void *peakenv_tilde_new(t_floatarg f)
{
  t_peakenv_tilde *x = (t_peakenv_tilde *)pd_new(peakenv_tilde_class);
  
  if(f <= 0.0f)
    f = 0.0f;
  x->x_sr = 44100.0f;
  peakenv_tilde_ft1(x, f);
  x->x_old_peak = 0.0f;
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0;
  return(x);
}

void peakenv_tilde_setup(void)
{
  peakenv_tilde_class = class_new(gensym("peakenv~"), (t_newmethod)peakenv_tilde_new,
    0, sizeof(t_peakenv_tilde), 0, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(peakenv_tilde_class, t_peakenv_tilde, x_msi);
  class_addmethod(peakenv_tilde_class, (t_method)peakenv_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(peakenv_tilde_class, (t_method)peakenv_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(peakenv_tilde_class, (t_method)peakenv_tilde_reset, gensym("reset"), 0);
//  class_sethelpsymbol(peakenv_tilde_class, gensym("iemhelp/help-peakenv~"));
}

--- NEW FILE: makefile ---
TARGET = iemlib1

include ../../Make.include


--- NEW FILE: gate.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"


/* --------- gate ---------------------- */
/* ----------- like spigot  ------------ */

typedef struct _gate
{
  t_object  x_obj;
  t_float   x_state;
} t_gate;

static t_class *gate_class;

static void gate_bang(t_gate *x)
{
  if(x->x_state != 0)
    outlet_bang(x->x_obj.ob_outlet);
}

static void gate_pointer(t_gate *x, t_gpointer *gp)
{
  if(x->x_state != 0)
    outlet_pointer(x->x_obj.ob_outlet, gp);
}

static void gate_float(t_gate *x, t_floatarg f)
{
  if(x->x_state != 0)
    outlet_float(x->x_obj.ob_outlet, f);
}

static void gate_symbol(t_gate *x, t_symbol *s)
{
  if(x->x_state != 0)
    outlet_symbol(x->x_obj.ob_outlet, s);
}

static void gate_list(t_gate *x, t_symbol *s, int argc, t_atom *argv)
{
  if(x->x_state != 0)
    outlet_list(x->x_obj.ob_outlet, s, argc, argv);
}

static void gate_anything(t_gate *x, t_symbol *s, int argc, t_atom *argv)
{
  if(x->x_state != 0)
    outlet_anything(x->x_obj.ob_outlet, s, argc, argv);
}

static void *gate_new(t_floatarg f)
{
  t_gate *x = (t_gate *)pd_new(gate_class);
  floatinlet_new(&x->x_obj, &x->x_state);
  outlet_new(&x->x_obj, 0);
  x->x_state = (f==0.0f)?0.0f:1.0f;
  return (x);
}

void gate_setup(void)
{
  gate_class = class_new(gensym("gate"), (t_newmethod)gate_new, 0,
    sizeof(t_gate), 0, A_DEFFLOAT, 0);
  class_addbang(gate_class, gate_bang);
  class_addpointer(gate_class, gate_pointer);
  class_addfloat(gate_class, gate_float);
  class_addsymbol(gate_class, gate_symbol);
  class_addlist(gate_class, gate_list);
  class_addanything(gate_class, gate_anything);
//  class_sethelpsymbol(gate_class, gensym("iemhelp/help-gate"));
}

--- NEW FILE: vcf_filter~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <string.h>
#include <math.h>

/* ---------- vcf_filter~ - slow dynamic vcf_filter 1. and 2. order ----------- */

typedef struct _vcf_filter_tilde
{
  t_object x_obj;
  t_float  x_wn1;
  t_float  x_wn2;
  t_float  x_msi;
  char     x_filtname[6];
} t_vcf_filter_tilde;

t_class *vcf_filter_tilde_class;

static t_int *vcf_filter_tilde_perform_snafu(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[4]);
  int n = (t_int)(w[6]);
  
  while(n--)
    *out++ = *in++;
  return(w+7);
}

/*
lp2
wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
*out++ = rcp*(wn0 + 2.0f*wn1 + wn2);
wn2 = wn1;
wn1 = wn0;

  bp2
  wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*al*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
      rbp2
      wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
      *out++ = rcp*l*(wn0 - wn2);
      wn2 = wn1;
      wn1 = wn0;
      
        hp2
        wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
        *out++ = rcp*(wn0 - 2.0f*wn1 + wn2);
        wn2 = wn1;
        wn1 = wn0;
        
*/

static t_int *vcf_filter_tilde_perform_lp2(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *lp = (t_float *)(w[2]);
  t_float *q = (t_float *)(w[3]);
  t_float *out = (t_float *)(w[4]);
  t_vcf_filter_tilde *x = (t_vcf_filter_tilde *)(w[5]);
  int i, n = (t_int)(w[6]);
  t_float wn0, wn1=x->x_wn1, wn2=x->x_wn2;
  t_float l, al, l2, rcp;
  
  for(i=0; i<n; i+=4)
  {
    l = lp[i];
    if(q[i] < 0.000001f)
      al = 1000000.0f*l;
    else if(q[i] > 1000000.0f)
      al = 0.000001f*l;
    else
      al = l/q[i];
    l2 = l*l + 1.0f;
    rcp = 1.0f/(al + l2);
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*(wn0 + 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*(wn0 + 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*(wn0 + 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*(wn0 + 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->x_wn1 = wn1;
  x->x_wn2 = wn2;
  return(w+7);
}

static t_int *vcf_filter_tilde_perform_bp2(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *lp = (t_float *)(w[2]);
  t_float *q = (t_float *)(w[3]);
  t_float *out = (t_float *)(w[4]);
  t_vcf_filter_tilde *x = (t_vcf_filter_tilde *)(w[5]);
  int i, n = (t_int)(w[6]);
  t_float wn0, wn1=x->x_wn1, wn2=x->x_wn2;
  t_float l, al, l2, rcp;
  
  for(i=0; i<n; i+=4)
  {
    l = lp[i];
    if(q[i] < 0.000001f)
      al = 1000000.0f*l;
    else if(q[i] > 1000000.0f)
      al = 0.000001f*l;
    else
      al = l/q[i];
    l2 = l*l + 1.0f;
    rcp = 1.0f/(al + l2);
    
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*al*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*al*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*al*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*al*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->x_wn1 = wn1;
  x->x_wn2 = wn2;
  return(w+7);
}

static t_int *vcf_filter_tilde_perform_rbp2(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *lp = (t_float *)(w[2]);
  t_float *q = (t_float *)(w[3]);
  t_float *out = (t_float *)(w[4]);
  t_vcf_filter_tilde *x = (t_vcf_filter_tilde *)(w[5]);
  int i, n = (t_int)(w[6]);
  t_float wn0, wn1=x->x_wn1, wn2=x->x_wn2;
  t_float al, l, l2, rcp;
  
  for(i=0; i<n; i+=4)
  {
    l = lp[i];
    if(q[i] < 0.000001f)
      al = 1000000.0f*l;
    else if(q[i] > 1000000.0f)
      al = 0.000001f*l;
    else
      al = l/q[i];
    l2 = l*l + 1.0f;
    rcp = 1.0f/(al + l2);
    
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*l*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*l*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*l*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = rcp*l*(wn0 - wn2);
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->x_wn1 = wn1;
  x->x_wn2 = wn2;
  return(w+7);
}

static t_int *vcf_filter_tilde_perform_hp2(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *lp = (t_float *)(w[2]);
  t_float *q = (t_float *)(w[3]);
  t_float *out = (t_float *)(w[4]);
  t_vcf_filter_tilde *x = (t_vcf_filter_tilde *)(w[5]);
  int i, n = (t_int)(w[6]);
  t_float wn0, wn1=x->x_wn1, wn2=x->x_wn2;
  t_float l, al, l2, rcp, forw;
  
  for(i=0; i<n; i+=4)
  {
    l = lp[i];
    if(q[i] < 0.000001f)
      al = 1000000.0f*l;
    else if(q[i] > 1000000.0f)
      al = 0.000001f*l;
    else
      al = l/q[i];
    l2 = l*l + 1.0f;
    rcp = 1.0f/(al + l2);
    forw = rcp * (l2 - 1.0f);
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = forw*(wn0 - 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = forw*(wn0 - 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = forw*(wn0 - 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
    
    wn0 = *in++ - rcp*(2.0f*(2.0f - l2)*wn1 + (l2 - al)*wn2);
    *out++ = forw*(wn0 - 2.0f*wn1 + wn2);
    wn2 = wn1;
    wn1 = wn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(wn2))
    wn2 = 0.0f;
  if(IEM_DENORMAL(wn1))
    wn1 = 0.0f;
  
  x->x_wn1 = wn1;
  x->x_wn2 = wn2;
  return(w+7);
}

static void vcf_filter_tilde_dsp(t_vcf_filter_tilde *x, t_signal **sp)
{
  if(!strcmp(x->x_filtname,"bp2"))
    dsp_add(vcf_filter_tilde_perform_bp2, 6, sp[0]->s_vec, sp[1]->s_vec, 
    sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n);
  else if(!strcmp(x->x_filtname,"rbp2"))
    dsp_add(vcf_filter_tilde_perform_rbp2, 6, sp[0]->s_vec, sp[1]->s_vec, 
    sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n);
  else if(!strcmp(x->x_filtname,"lp2"))
    dsp_add(vcf_filter_tilde_perform_lp2, 6, sp[0]->s_vec, sp[1]->s_vec,
    sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n);
  else if(!strcmp(x->x_filtname,"hp2"))
    dsp_add(vcf_filter_tilde_perform_hp2, 6, sp[0]->s_vec, sp[1]->s_vec,
    sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n);
  else
  {
    dsp_add(vcf_filter_tilde_perform_snafu, 6, sp[0]->s_vec, sp[1]->s_vec,
      sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n);
    post("vcf_filter~-Error: 1. initial-arguments: <sym> kind: lp2, bp2, rbp2, hp2!");
  }
}

static void *vcf_filter_tilde_new(t_symbol *filt_typ)
{
  t_vcf_filter_tilde *x = (t_vcf_filter_tilde *)pd_new(vcf_filter_tilde_class);
  char *c;
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0;
  x->x_wn1 = 0.0f;
  x->x_wn2 = 0.0f;
  c = (char *)filt_typ->s_name;
  c[5] = 0;
  strcpy(x->x_filtname, c);
  return(x);
}

void vcf_filter_tilde_setup(void)
{
  vcf_filter_tilde_class = class_new(gensym("vcf_filter~"), (t_newmethod)vcf_filter_tilde_new,
    0, sizeof(t_vcf_filter_tilde), 0, A_SYMBOL, 0);
  CLASS_MAINSIGNALIN(vcf_filter_tilde_class, t_vcf_filter_tilde, x_msi);
  class_addmethod(vcf_filter_tilde_class, (t_method)vcf_filter_tilde_dsp, gensym("dsp"), 0);
//  class_sethelpsymbol(vcf_filter_tilde_class, gensym("iemhelp/help-vcf_filter~"));
}

--- NEW FILE: iemlib.h ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#ifndef __IEMLIB_H__
#define __IEMLIB_H__


#define IS_A_POINTER(atom,index) ((atom+index)->a_type == A_POINTER)
#define IS_A_FLOAT(atom,index) ((atom+index)->a_type == A_FLOAT)
#define IS_A_SYMBOL(atom,index) ((atom+index)->a_type == A_SYMBOL)
#define IS_A_DOLLAR(atom,index) ((atom+index)->a_type == A_DOLLAR)
#define IS_A_DOLLSYM(atom,index) ((atom+index)->a_type == A_DOLLSYM)
#define IS_A_SEMI(atom,index) ((atom+index)->a_type == A_SEMI)
#define IS_A_COMMA(atom,index) ((atom+index)->a_type == A_COMMA)


#ifdef NT
int sys_noloadbang;
//t_symbol *iemgui_key_sym=0;
#include <io.h>
#else
extern int sys_noloadbang;
//extern t_symbol *iemgui_key_sym;
#include <unistd.h>
#endif

#define DEFDELVS 64
#define XTRASAMPS 4
#define SAMPBLK 4


#define UNITBIT32 1572864.  /* 3*2^19; bit 32 has place value 1 */

/* machine-dependent definitions.  These ifdefs really
should have been by CPU type and not by operating system! */
#ifdef IRIX
/* big-endian.  Most significant byte is at low address in memory */
#define HIOFFSET 0    /* word offset to find MSB */
#define LOWOFFSET 1    /* word offset to find LSB */
#define int32 long  /* a data type that has 32 bits */
#else
#ifdef MSW
/* little-endian; most significant byte is at highest address */
#define HIOFFSET 1
#define LOWOFFSET 0
#define int32 long
#else
#ifdef __FreeBSD__
#include <machine/endian.h>
#if BYTE_ORDER == LITTLE_ENDIAN
#define HIOFFSET 1
#define LOWOFFSET 0
#else
#define HIOFFSET 0    /* word offset to find MSB */
#define LOWOFFSET 1    /* word offset to find LSB */
#endif /* BYTE_ORDER */
#include <sys/types.h>
#define int32 int32_t
#endif
#ifdef __linux__

#include <endian.h>

#if !defined(__BYTE_ORDER) || !defined(__LITTLE_ENDIAN)                         
#error No byte order defined                                                    
#endif                                                                          

#if __BYTE_ORDER == __LITTLE_ENDIAN                                             
#define HIOFFSET 1                                                              
#define LOWOFFSET 0                                                             
#else                                                                           
#define HIOFFSET 0    /* word offset to find MSB */                             
#define LOWOFFSET 1    /* word offset to find LSB */                            
#endif /* __BYTE_ORDER */                                                       

#include <sys/types.h>
#define int32 int32_t

#else
#ifdef __APPLE__
#define HIOFFSET 0    /* word offset to find MSB */
#define LOWOFFSET 1    /* word offset to find LSB */
#define int32 int  /* a data type that has 32 bits */

#endif /* __APPLE__ */
#endif /* __linux__ */
#endif /* MSW */
#endif /* SGI */

union tabfudge
{
  double tf_d;
  int32 tf_i[2];
};

#if defined __i386__ || defined __x86_64__
#define IEM_DENORMAL(f) ((((*(unsigned int*)&(f))&0x60000000)==0) || \
(((*(unsigned int*)&(f))&0x60000000)==0x60000000))
/* more stringent test: anything not between 1e-19 and 1e19 in absolute val */
#else

#define IEM_DENORMAL(f) 0

#endif

#endif

--- NEW FILE: lp1_t~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* -- lp1_t~ - slow dynamic lowpass-filter 1. order with tau input --- */

typedef struct _lp1_t_tilde
{
  t_object  x_obj;
  t_float   yn1;
  t_float   c0;
  t_float   c1;
  t_float   sr;
  t_float   cur_t;
  t_float   delta_t;
  t_float   end_t;
  t_float   ticks_per_interpol_time;
  t_float   rcp_ticks;
  t_float   interpol_time;
  int       ticks;
  int       counter_t;
  t_float   x_msi;
} t_lp1_t_tilde;

t_class *lp1_t_tilde_class;

static void lp1_t_tilde_dsp_tick(t_lp1_t_tilde *x)
{
  if(x->counter_t)
  {
    if(x->counter_t <= 1)
    {
      x->cur_t = x->end_t;
      x->counter_t = 0;
    }
    else
    {
      x->counter_t--;
      x->cur_t += x->delta_t;
    }
    if(x->cur_t == 0.0f)
      x->c1 = 0.0f;
    else
      x->c1 = exp((x->sr)/x->cur_t);
    x->c0 = 1.0f - x->c1;
  }
}

static t_int *lp1_t_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float yn0, yn1=x->yn1;
  t_float c0=x->c0, c1=x->c1;
  
  lp1_t_tilde_dsp_tick(x);
  for(i=0; i<n; i++)
  {
    yn0 = (*in++)*c0 + yn1*c1;
    *out++ = yn0;
    yn1 = yn0;
  }
  /* NAN protect */
  if(IEM_DENORMAL(yn1))
    yn1 = 0.0f;
  x->yn1 = yn1;
  return(w+5);
}

static t_int *lp1_t_tilde_perf8(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
  int i, n = (t_int)(w[4]);
  t_float yn[9];
  t_float c0=x->c0, c1=x->c1;
  
  lp1_t_tilde_dsp_tick(x);
  yn[0] = x->yn1;
  for(i=0; i<n; i+=8, in+=8, out+=8)
  {
    yn[1] = in[0]*c0 + yn[0]*c1;
    out[0] = yn[1];
    yn[2] = in[1]*c0 + yn[1]*c1;
    out[1] = yn[2];
    yn[3] = in[2]*c0 + yn[2]*c1;
    out[2] = yn[3];
    yn[4] = in[3]*c0 + yn[3]*c1;
    out[3] = yn[4];
    yn[5] = in[4]*c0 + yn[4]*c1;
    out[4] = yn[5];
    yn[6] = in[5]*c0 + yn[5]*c1;
    out[5] = yn[6];
    yn[7] = in[6]*c0 + yn[6]*c1;
    out[6] = yn[7];
    yn[8] = in[7]*c0 + yn[7]*c1;
    out[7] = yn[8];
    yn[0] = yn[8];
  }
  /* NAN protect */
  if(IEM_DENORMAL(yn[0]))
    yn[0] = 0.0f;
  
  x->yn1 = yn[0];
  return(w+5);
}

static void lp1_t_tilde_ft2(t_lp1_t_tilde *x, t_floatarg t)
{
  int i = (int)((x->ticks_per_interpol_time)*t);
  
  x->interpol_time = t;
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
}

static void lp1_t_tilde_ft1(t_lp1_t_tilde *x, t_floatarg time_const)
{
  if(time_const < 0.0f)
    time_const = 0.0f;
  if(time_const != x->cur_t)
  {
    x->end_t = time_const;
    x->counter_t = x->ticks;
    x->delta_t = (time_const - x->cur_t) * x->rcp_ticks;
  }
}

static void lp1_t_tilde_dsp(t_lp1_t_tilde *x, t_signal **sp)
{
  int i, n=(int)sp[0]->s_n;
  
  x->sr = -1000.0f / (t_float)(sp[0]->s_sr);
  x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  if(x->cur_t == 0.0f)
    x->c1 = 0.0f;
  else
    x->c1 = exp((x->sr)/x->cur_t);
  x->c0 = 1.0f - x->c1;
  if(n&7)
    dsp_add(lp1_t_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
  else
    dsp_add(lp1_t_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}

static void *lp1_t_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
  t_lp1_t_tilde *x = (t_lp1_t_tilde *)pd_new(lp1_t_tilde_class);
  int i;
  t_float time_const=0.0f, interpol=0.0f;
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0;
  x->counter_t = 1;
  x->delta_t = 0.0f;
  x->interpol_time = 0.0f;
  x->yn1 = 0.0f;
  x->sr = -1.0f / 44.1f;
  if((argc >= 1)&&IS_A_FLOAT(argv,0))
    time_const = (t_float)atom_getfloatarg(0, argc, argv);
  if((argc >= 2)&&IS_A_FLOAT(argv,1))
    interpol = (t_float)atom_getfloatarg(1, argc, argv);
  if(time_const < 0.0f)
    time_const = 0.0f;
  x->cur_t = time_const;
  if(time_const == 0.0f)
    x->c1 = 0.0f;
  else
    x->c1 = exp((x->sr)/time_const);
  x->c0 = 1.0f - x->c1;
  if(interpol < 0.0f)
    interpol = 0.0f;
  x->interpol_time = interpol;
  x->ticks_per_interpol_time = 0.5f;
  i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
  if(i <= 0)
    i = 1;
  x->ticks = i;
  x->rcp_ticks = 1.0f / (t_float)i;
  x->end_t = x->cur_t;
  return (x);
}

void lp1_t_tilde_setup(void)
{
  lp1_t_tilde_class = class_new(gensym("lp1_t~"), (t_newmethod)lp1_t_tilde_new,
        0, sizeof(t_lp1_t_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(lp1_t_tilde_class, t_lp1_t_tilde, x_msi);
  class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
//  class_sethelpsymbol(lp1_t_tilde_class, gensym("iemhelp/help-lp1_t~"));
}

--- NEW FILE: biquad_freq_resp.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ------------------------ biquad_freq_resp ------------------- */
/* -- calculates the frequency responce of a biquad structure -- */

typedef struct _biquad_freq_resp
{
  t_object  x_obj;
  t_float   a0;
  t_float   a1;
  t_float   a2;
  t_float   b1;
  t_float   b2;
  t_outlet  *x_out_re;
  t_outlet  *x_out_im;
} t_biquad_freq_resp;

static t_class *biquad_freq_resp_class;

static void biquad_freq_resp_float(t_biquad_freq_resp *x, t_floatarg f)
{
  t_float re1, im1, re2, im2;
  t_float c, s, a;
  
  if(f < 0.0f)
    f = 0.0f;
  else if(f > 180.0f)
    f = 180.0;
  f *= 3.14159265f;
  f /= 180.0f;
  
  c = cos(f);
  s = sin(f);
  
  re1 = x->a0 + x->a1*c + x->a2*(c*c - s*s);
  im1 = x->a1*s + x->a2*2.0f*(s*c);
  re2 = 1.0f - x->b1*c - x->b2*(c*c - s*s);
  im2 = -x->b1*s - x->b2*2.0f*(s*c);
  a = re2*re2 + im2*im2;
  outlet_float(x->x_out_im, (re1*im2 - re2*im1)/a);/* because z^-1 = e^-jwt, negative sign */
  outlet_float(x->x_out_re, (re1*re2 + im1*im2)/a);
  
}
/* y/x = (a0 + a1*z-1 + a2*z-2)/(1 - b1*z-1 - b2*z-2);*/

static void biquad_freq_resp_list(t_biquad_freq_resp *x, t_symbol *s, int argc, t_atom *argv)
{
  if((argc == 5)&&IS_A_FLOAT(argv,4)&&IS_A_FLOAT(argv,3)&&IS_A_FLOAT(argv,2)&&IS_A_FLOAT(argv,1)&&IS_A_FLOAT(argv,0))
  {
    x->b1 = (float)atom_getfloatarg(0, argc, argv);
    x->b2 = (float)atom_getfloatarg(1, argc, argv);
    x->a0 = (float)atom_getfloatarg(2, argc, argv);
    x->a1 = (float)atom_getfloatarg(3, argc, argv);
    x->a2 = (float)atom_getfloatarg(4, argc, argv);
  }
}

static void *biquad_freq_resp_new(void)
{
  t_biquad_freq_resp *x = (t_biquad_freq_resp *)pd_new(biquad_freq_resp_class);
  x->x_out_re = outlet_new(&x->x_obj, &s_float);
  x->x_out_im = outlet_new(&x->x_obj, &s_float);
  x->b1 = 0.0f;
  x->b2 = 0.0f;
  x->a0 = 0.0f;
  x->a1 = 0.0f;
  x->a2 = 0.0f;
  return (x);
}

void biquad_freq_resp_setup(void)
{
  biquad_freq_resp_class = class_new(gensym("biquad_freq_resp"), (t_newmethod)biquad_freq_resp_new, 0,
    sizeof(t_biquad_freq_resp), 0, 0);
  class_addfloat(biquad_freq_resp_class, biquad_freq_resp_float);
    class_addlist(biquad_freq_resp_class, (t_method)biquad_freq_resp_list);
//    class_sethelpsymbol(biquad_freq_resp_class, gensym("iemhelp/help-biquad_freq_resp"));
}

--- NEW FILE: iem_cot4~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ------------------------ iem_cot4~ ----------------------------- */

t_float *iem_cot4_tilde_table_cos=(t_float *)0L;
t_float *iem_cot4_tilde_table_sin=(t_float *)0L;

static t_class *iem_cot4_tilde_class;

typedef struct _iem_cot4_tilde
{
  t_object  x_obj;
  t_float   x_sr;
  t_float   x_msi;
} t_iem_cot4_tilde;

static t_int *iem_cot4_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_float norm_freq;
  t_float hout;
  t_iem_cot4_tilde *x = (t_iem_cot4_tilde *)(w[3]);
  t_float sr=x->x_sr;
  int n = (int)(w[4]);
  t_float *ctab = iem_cot4_tilde_table_cos, *stab = iem_cot4_tilde_table_sin;
  t_float *caddr, *saddr, cf1, cf2, sf1, sf2, frac;
  double dphase;
  int normhipart;
  int32 mytfi;
  union tabfudge tf;
  
  tf.tf_d = UNITBIT32;
  normhipart = tf.tf_i[HIOFFSET];
  
#if 0     /* this is the readable version of the code. */
  while (n--)
  {
    norm_freq = *in * sr;
    if(norm_freq < 0.0001f)
      norm_freq = 0.0001f;
    else if(norm_freq > 0.9f)
      norm_freq = 0.9f;
    dphase = (double)(norm_freq * (t_float)(COSTABSIZE)) + UNITBIT32;
    tf.tf_d = dphase;
    mytfi = tf.tf_i[HIOFFSET] & (COSTABSIZE-1);
    saddr = stab + (mytfi);
    caddr = ctab + (mytfi);
    tf.tf_i[HIOFFSET] = normhipart;
    frac = tf.tf_d - UNITBIT32;
    sf1 = saddr[0];
    sf2 = saddr[1];
    cf1 = caddr[0];
    cf2 = caddr[1];
    in++;
    *out++ = (cf1 + frac * (cf2 - cf1))/(sf1 + frac * (sf2 - sf1));
  }
#endif
#if 1     /* this is the same, unwrapped by hand. prolog beg*/
  n /= 4;
  norm_freq = *in * sr;
  if(norm_freq < 0.0001f)
    norm_freq = 0.0001f;
  else if(norm_freq > 0.9f)
    norm_freq = 0.9f;
  dphase = (double)(norm_freq * (t_float)(COSTABSIZE)) + UNITBIT32;
  tf.tf_d = dphase;
  mytfi = tf.tf_i[HIOFFSET] & (COSTABSIZE-1);
  saddr = stab + (mytfi);
  caddr = ctab + (mytfi);
  tf.tf_i[HIOFFSET] = normhipart;   
  in += 4;                 /*prolog end*/
  while (--n)
  {
    norm_freq = *in * sr;
    if(norm_freq < 0.0001f)
      norm_freq = 0.0001f;
    else if(norm_freq > 0.9f)
      norm_freq = 0.9f;
    dphase = (double)(norm_freq * (t_float)(COSTABSIZE)) + UNITBIT32;
    frac = tf.tf_d - UNITBIT32;
    tf.tf_d = dphase;
    sf1 = saddr[0];
    sf2 = saddr[1];
    cf1 = caddr[0];
    cf2 = caddr[1];
    mytfi = tf.tf_i[HIOFFSET] & (COSTABSIZE-1);
    saddr = stab + (mytfi);
    caddr = ctab + (mytfi);
    hout = (cf1 + frac * (cf2 - cf1))/(sf1 + frac * (sf2 - sf1));
    *out++ = hout;
    *out++ = hout;
    *out++ = hout;
    *out++ = hout;
    in += 4;
    tf.tf_i[HIOFFSET] = normhipart;
  }/*epilog beg*/
  frac = tf.tf_d - UNITBIT32;
  sf1 = saddr[0];
  sf2 = saddr[1];
  cf1 = caddr[0];
  cf2 = caddr[1];
  hout = (cf1 + frac * (cf2 - cf1))/(sf1 + frac * (sf2 - sf1));
  *out++ = hout;
  *out++ = hout;
  *out++ = hout;
  *out++ = hout;
  /*epilog end*/
#endif
  return (w+5);
}

static void iem_cot4_tilde_dsp(t_iem_cot4_tilde *x, t_signal **sp)
{
  x->x_sr = 2.0f / (t_float)sp[0]->s_sr;
  dsp_add(iem_cot4_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, sp[0]->s_n);
}

static void iem_cot4_tilde_maketable(void)
{
  int i;
  t_float *fp, phase, fff, phsinc = 0.5*3.141592653 / ((t_float)COSTABSIZE);
  union tabfudge tf;
  
  if(!iem_cot4_tilde_table_sin)
  {
    iem_cot4_tilde_table_sin = (t_float *)getbytes(sizeof(t_float) * (COSTABSIZE+1));
    for(i=COSTABSIZE+1, fp=iem_cot4_tilde_table_sin, phase=0; i--; fp++, phase+=phsinc)
      *fp = sin(phase);
  }
  if(!iem_cot4_tilde_table_cos)
  {
    iem_cot4_tilde_table_cos = (t_float *)getbytes(sizeof(t_float) * (COSTABSIZE+1));
    for(i=COSTABSIZE+1, fp=iem_cot4_tilde_table_cos, phase=0; i--; fp++, phase+=phsinc)
      *fp = cos(phase);
  }
  tf.tf_d = UNITBIT32 + 0.5;
  if((unsigned)tf.tf_i[LOWOFFSET] != 0x80000000)
    bug("iem_cot4~: unexpected machine alignment");
}

static void *iem_cot4_tilde_new(void)
{
  t_iem_cot4_tilde *x = (t_iem_cot4_tilde *)pd_new(iem_cot4_tilde_class);
  
  outlet_new(&x->x_obj, gensym("signal"));
  x->x_msi = 0;
  return (x);
}

void iem_cot4_tilde_setup(void)
{
  iem_cot4_tilde_class = class_new(gensym("iem_cot4~"), (t_newmethod)iem_cot4_tilde_new, 0,
    sizeof(t_iem_cot4_tilde), 0, 0);
  class_addcreator((t_newmethod)iem_cot4_tilde_new, gensym("iem_cot~"), 0);
  CLASS_MAINSIGNALIN(iem_cot4_tilde_class, t_iem_cot4_tilde, x_msi);
  class_addmethod(iem_cot4_tilde_class, (t_method)iem_cot4_tilde_dsp, gensym("dsp"), 0);
  iem_cot4_tilde_maketable();
//  class_sethelpsymbol(iem_cot4_tilde_class, gensym("iemhelp/help-iem_cot4~"));
}

--- NEW FILE: iem_delay~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"


/* -------------------------- iem_delay~ ------------------------------ */

static t_class *iem_delay_tilde_class;

#define IEMDELAY_DEF_VEC_SIZE 64

typedef struct _iem_delay_tilde
{
  t_object  x_obj;
  int       x_mallocsize;
  t_float   x_max_delay_ms;
  t_float   x_current_delay_ms;
  t_float   *x_begmem1;
  t_float   *x_begmem2;
  int       x_writeindex;
  int       x_blocksize;
  int       x_delay_samples;
  t_float   x_sr;
  t_float   x_msi;
} t_iem_delay_tilde;

static void iem_delay_tilde_cur_del(t_iem_delay_tilde *x, t_floatarg f)
{
  if(f < 0.0f)
    f = 0.0f;
  else if(f > x->x_max_delay_ms)
    f = x->x_max_delay_ms;
  x->x_current_delay_ms = f;
  x->x_delay_samples = (int)(0.001f*x->x_sr * f + 0.5f);
}

static t_int *iem_delay_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_iem_delay_tilde *x = (t_iem_delay_tilde *)(w[3]);
  int n=(int)(w[4]);
  int writeindex = x->x_writeindex;
  t_float *vec1, *vec2, *vec3;
  
  vec1 = x->x_begmem1 + writeindex;
  vec2 = x->x_begmem2 + writeindex;
  vec3 = x->x_begmem2 + writeindex - x->x_delay_samples;
  writeindex += n;
  while(n--)
  {
    *vec1++ = *vec2++ = *in++;
    *out++ = *vec3++;
  }
  if(writeindex >= x->x_mallocsize)
  {
    writeindex -= x->x_mallocsize;
  }
  x->x_writeindex = writeindex;
  return(w+5);
}

static t_int *iem_delay_tilde_perf8(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_iem_delay_tilde *x = (t_iem_delay_tilde *)(w[3]);
  int i, n=(int)(w[4]);
  int writeindex = x->x_writeindex;
  t_float *vec1, *vec2;
  
  vec1 = x->x_begmem1 + writeindex;
  vec2 = x->x_begmem2 + writeindex;
  for(i=0; i<n; i+=8)
  {
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
    *vec1++ = *vec2++ = *in++;
  }
  
  vec2 = x->x_begmem2 + writeindex - x->x_delay_samples;
  for(i=0; i<n; i+=8)
  {
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
    *out++ = *vec2++;
  }
  
  writeindex += n;
  if(writeindex >= x->x_mallocsize)
  {
    writeindex -= x->x_mallocsize;
  }
  x->x_writeindex = writeindex;
  return(w+5);
}

static void iem_delay_tilde_dsp(t_iem_delay_tilde *x, t_signal **sp)
{
  int blocksize = sp[0]->s_n, i;
  
  if(!x->x_blocksize)/*first time*/
  {
    int nsamps = x->x_max_delay_ms * (t_float)sp[0]->s_sr * 0.001f;
    
    if(nsamps < 1)
      nsamps = 1;
    nsamps += ((- nsamps) & (blocksize - 1));
    nsamps += blocksize;
    x->x_mallocsize = nsamps;
    x->x_begmem1 = (t_float *)getbytes(2 * x->x_mallocsize * sizeof(t_float));
    x->x_begmem2 = x->x_begmem1 + x->x_mallocsize;
    post("beginn = %x", (unsigned long)x->x_begmem1);
    x->x_writeindex = blocksize;
    x->x_sr = (t_float)sp[0]->s_sr;
    x->x_blocksize = blocksize;
    x->x_delay_samples = (int)(0.001f*x->x_sr * x->x_current_delay_ms + 0.5f);
  }
  else if((x->x_blocksize != blocksize) || ((t_float)sp[0]->s_sr != x->x_sr))
  {
    int nsamps = x->x_max_delay_ms * (t_float)sp[0]->s_sr * 0.001f;
    
    if(nsamps < 1)
      nsamps = 1;
    nsamps += ((- nsamps) & (blocksize - 1));
    nsamps += blocksize;
    
    x->x_begmem1 = (t_float *)resizebytes(x->x_begmem1, 2*x->x_mallocsize*sizeof(t_float), 2*nsamps*sizeof(t_float));
    x->x_mallocsize = nsamps;
    x->x_begmem2 = x->x_begmem1 + x->x_mallocsize;
    post("beginn = %x", (unsigned long)x->x_begmem1);
    if(x->x_writeindex >= nsamps)
      x->x_writeindex -= nsamps;
    x->x_sr = (t_float)sp[0]->s_sr;
    x->x_blocksize = blocksize;
    x->x_delay_samples = (int)(0.001f*x->x_sr * x->x_current_delay_ms + 0.5f);
  }
  
  if(blocksize&7)
    dsp_add(iem_delay_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, blocksize);
  else
    dsp_add(iem_delay_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, blocksize);
}

static void *iem_delay_tilde_new(t_floatarg max_delay_ms, t_floatarg current_delay_ms)
{
  t_iem_delay_tilde *x = (t_iem_delay_tilde *)pd_new(iem_delay_tilde_class);
  int nsamps;
  
  if(max_delay_ms < 2.0f)
    max_delay_ms = 2.0f;
  x->x_max_delay_ms = max_delay_ms;
  if(current_delay_ms < 0.0f)
    current_delay_ms = 0.0f;
  else if(current_delay_ms > max_delay_ms)
    current_delay_ms = max_delay_ms;
  x->x_current_delay_ms = current_delay_ms;
  nsamps = max_delay_ms * sys_getsr() * 0.001f;
  if(nsamps < 1)
    nsamps = 1;
  nsamps += ((- nsamps) & (IEMDELAY_DEF_VEC_SIZE - 1));
  nsamps += IEMDELAY_DEF_VEC_SIZE;
  x->x_mallocsize = nsamps;
  x->x_begmem1 = (t_float *)getbytes(2 * x->x_mallocsize * sizeof(t_float));
  x->x_begmem2 = x->x_begmem1 + x->x_mallocsize;
  x->x_writeindex = IEMDELAY_DEF_VEC_SIZE;
  x->x_blocksize = 0;
  x->x_sr = 0.0f;
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0.0f;
  return (x);
}

static void iem_delay_tilde_free(t_iem_delay_tilde *x)
{
  freebytes(x->x_begmem1, 2 * x->x_mallocsize * sizeof(t_float));
}

void iem_delay_tilde_setup(void)
{
  iem_delay_tilde_class = class_new(gensym("iem_delay~"), (t_newmethod)iem_delay_tilde_new, (t_method)iem_delay_tilde_free,
    sizeof(t_iem_delay_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(iem_delay_tilde_class, t_iem_delay_tilde, x_msi);
  class_addmethod(iem_delay_tilde_class, (t_method)iem_delay_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(iem_delay_tilde_class, (t_method)iem_delay_tilde_cur_del, gensym("ft1"), A_FLOAT, 0);
}

--- NEW FILE: sin_phase~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"

/* --- sin_phase~ - output the phase-difference between --- */
/* --- 2 sinewaves with the same frequency in samples ----- */
/* --- as a signal ---------------------------------------- */

typedef struct _sin_phase_tilde
{
  t_object x_obj;
  t_float  x_prev1;
  t_float  x_prev2;
  t_float  x_cur_out;
  int      x_counter1;
  int      x_counter2;
  int      x_state1;
  int      x_state2;
  t_float  x_msi;
} t_sin_phase_tilde;

t_class *sin_phase_tilde_class;

static t_int *sin_phase_tilde_perform(t_int *w)
{
  t_float *in1 = (t_float *)(w[1]);
  t_float *in2 = (t_float *)(w[2]);
  t_float *out = (t_float *)(w[3]);
  t_sin_phase_tilde *x = (t_sin_phase_tilde *)(w[4]);
  int i, n = (t_int)(w[5]);
  t_float prev1=x->x_prev1;
  t_float prev2=x->x_prev2;
  t_float cur_out=x->x_cur_out;
  int counter1=x->x_counter1;
  int counter2=x->x_counter2;
  int state1=x->x_state1;
  int state2=x->x_state2;
  
  for(i=0; i<n; i++)
  {
    if((in1[i] >= 0.0f) && (prev1 < 0.0f))
    {/* pos. zero cross of sig_in_1 */
      state1 = 1;
      counter1 = 0;
    }
    else if((in1[i] < 0.0f) && (prev1 >= 0.0f))
    {/* neg. zero cross of sig_in_1 */
      state2 = 1;
      counter2 = 0;
    }
    
    if((in2[i] >= 0.0f) && (prev2 < 0.0f))
    {/* pos. zero cross of sig_in_2 */
      state1 = 0;
      cur_out = (t_float)(counter1);
      counter1 = 0;
    }
    else if((in2[i] < 0.0f) && (prev2 >= 0.0f))
    {/* neg. zero cross of sig_in_2 */
      state2 = 0;
      cur_out = (t_float)(counter2);
      counter2 = 0;
    }
    
    if(state1)
      counter1++;
    if(state2)
      counter2++;
    
    prev1 = in1[i];
    prev2 = in2[i];
    out[i] = cur_out;
  }
  
  x->x_prev1 = prev1;
  x->x_prev2 = prev2;
  x->x_cur_out = cur_out;
  x->x_counter1 = counter1;
  x->x_counter2 = counter2;
  x->x_state1 = state1;
  x->x_state2 = state2;
  
  return(w+6);
}

static void sin_phase_tilde_dsp(t_sin_phase_tilde *x, t_signal **sp)
{
  dsp_add(sin_phase_tilde_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n);
}

static void *sin_phase_tilde_new(void)
{
  t_sin_phase_tilde *x = (t_sin_phase_tilde *)pd_new(sin_phase_tilde_class);
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
  outlet_new(&x->x_obj, &s_signal);
  
  x->x_prev1 = 0.0f;
  x->x_prev2 = 0.0f;
  x->x_cur_out = 0.0f;
  x->x_counter1 = 0;
  x->x_counter2 = 0;
  x->x_state1 = 0;
  x->x_state2 = 0;
  x->x_msi = 0;
  
  return (x);
}

void sin_phase_tilde_setup(void)
{
  sin_phase_tilde_class = class_new(gensym("sin_phase~"), (t_newmethod)sin_phase_tilde_new,
        0, sizeof(t_sin_phase_tilde), 0, 0);
  CLASS_MAINSIGNALIN(sin_phase_tilde_class, t_sin_phase_tilde, x_msi);
  class_addmethod(sin_phase_tilde_class, (t_method)sin_phase_tilde_dsp, gensym("dsp"), 0);
//  class_sethelpsymbol(sin_phase_tilde_class, gensym("iemhelp/help-sin_phase~"));
}

--- NEW FILE: iemlib1.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"

static t_class *iemlib1_class;

static void *iemlib1_new(void)
{
  t_object *x = (t_object *)pd_new(iemlib1_class);
  
  return (x);
}

void biquad_freq_resp_setup(void);
void db2v_setup(void);
void f2note_setup(void);
void filter_tilde_setup(void);
void FIR_tilde_setup(void);
void forpp_setup(void);
void gate_setup(void);
void hml_shelf_tilde_setup(void);
void iem_cot4_tilde_setup(void);
void iem_delay_tilde_setup(void);
void iem_pow4_tilde_setup(void);
void iem_sqrt4_tilde_setup(void);
void lp1_t_tilde_setup(void);
void mov_avrg_kern_tilde_setup(void);
void para_bp2_tilde_setup(void);
void peakenv_tilde_setup(void);
void prvu_tilde_setup(void);
void pvu_tilde_setup(void);
void rvu_tilde_setup(void);
void sin_phase_tilde_setup(void);
void soundfile_info_setup(void);
void split_setup(void);
void v2db_setup(void);
void vcf_filter_tilde_setup(void);

/* ------------------------ setup routine ------------------------- */

void iemlib1_setup(void)
{
  iemlib1_class = class_new(gensym("iemlib1"), iemlib1_new, 0,
    sizeof(t_object), CLASS_NOINLET, 0);
  
  biquad_freq_resp_setup();
  db2v_setup();
  f2note_setup();
  filter_tilde_setup();
  FIR_tilde_setup();
  forpp_setup();
  gate_setup();
  hml_shelf_tilde_setup();
  iem_cot4_tilde_setup();
  iem_delay_tilde_setup();
  iem_pow4_tilde_setup();
  iem_sqrt4_tilde_setup();
  lp1_t_tilde_setup();
  mov_avrg_kern_tilde_setup();
  para_bp2_tilde_setup();
  peakenv_tilde_setup();
  prvu_tilde_setup();
  pvu_tilde_setup();
  rvu_tilde_setup();
  sin_phase_tilde_setup();
  soundfile_info_setup();
  split_setup();
  v2db_setup();
  vcf_filter_tilde_setup();
  
	post("iemlib1 (R-1.17) library loaded!   (c) Thomas Musil 11.2006");
	post("   musil%ciem.at iem KUG Graz Austria", '@');
}

--- NEW FILE: FIR~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"


/* ---------- FIR~ - FIR-filter with table-coef ----------- */

typedef struct _FIR_tilde
{
  t_object  x_obj;
  t_float   *x_coef_beg;
  t_float   *x_history_beg;
  int       x_rw_index;
  int       x_fir_order;
  t_symbol  *x_table_name;
  t_float   x_msi;
} t_FIR_tilde;

t_class *FIR_tilde_class;

static t_int *FIR_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_float *out = (t_float *)(w[2]);
  t_FIR_tilde *x = (t_FIR_tilde *)(w[3]);
  int n = (t_int)(w[4]);
  int rw_index = x->x_rw_index;
  int i, j;
  int order = x->x_fir_order;
  int ord16 = order / 16;
  t_float sum=0.0f;
  t_float *coef = x->x_coef_beg;
  t_float *write_hist1=x->x_history_beg;
  t_float *write_hist2;
  t_float *read_hist;
  t_float *coef_vec;
  t_float *hist_vec;
  
  if(!coef)
    goto FIR_tildeperfzero;
  
  write_hist1 = x->x_history_beg;
  write_hist2 = write_hist1 + order;
  read_hist = write_hist2;
  
  for(i=0; i<n; i++)
  {
    write_hist1[rw_index] = in[i];
    write_hist2[rw_index] = in[i];
    
    sum = 0.0f;
    coef_vec = coef;
    hist_vec = &read_hist[rw_index];
    for(j=0; j<ord16; j++)
    {
      sum += coef_vec[0] * hist_vec[0];
      sum += coef_vec[1] * hist_vec[-1];
      sum += coef_vec[2] * hist_vec[-2];
      sum += coef_vec[3] * hist_vec[-3];
      sum += coef_vec[4] * hist_vec[-4];
      sum += coef_vec[5] * hist_vec[-5];
      sum += coef_vec[6] * hist_vec[-6];
      sum += coef_vec[7] * hist_vec[-7];
      sum += coef_vec[8] * hist_vec[-8];
      sum += coef_vec[9] * hist_vec[-9];
      sum += coef_vec[10] * hist_vec[-10];
      sum += coef_vec[11] * hist_vec[-11];
      sum += coef_vec[12] * hist_vec[-12];
      sum += coef_vec[13] * hist_vec[-13];
      sum += coef_vec[14] * hist_vec[-14];
      sum += coef_vec[15] * hist_vec[-15];
      coef_vec += 16;
      hist_vec -= 16;
    }
    for(j=ord16*16; j<order; j++)
    {
      sum += coef[j] * read_hist[rw_index-j];
    }
    out[i] = sum;
    
    rw_index++;
    if(rw_index >= order)
      rw_index -= order;
  }
  
  x->x_rw_index = rw_index;
  return(w+5);
  
FIR_tildeperfzero:
  
  while(n--)
    *out++ = 0.0f;
  return(w+5);
}

void FIR_tilde_set(t_FIR_tilde *x, t_symbol *table_name, t_floatarg forder)
{
  t_garray *ga;
  int table_size;
  int order = (int)forder;
  
  x->x_table_name = table_name;
  if(!(ga = (t_garray *)pd_findbyclass(x->x_table_name, garray_class)))
  {
    if(*table_name->s_name)
      error("FIR~: %s: no such table~", x->x_table_name->s_name);
    x->x_coef_beg = 0;
  }
  else if(!garray_getfloatarray(ga, &table_size, &x->x_coef_beg))
  {
    error("%s: bad template for FIR~", x->x_table_name->s_name);
    x->x_coef_beg = 0;
  }
  else if(table_size < order)
  {
    error("FIR~: tablesize %d < order %d !!!!", table_size, order);
    x->x_coef_beg = 0;
  }
  else
    garray_usedindsp(ga);
  x->x_rw_index = 0;
  if(order > x->x_fir_order)/* resize */
    x->x_history_beg =  (t_float *)resizebytes(x->x_history_beg, 2*x->x_fir_order*sizeof(t_float), 2*order*sizeof(float));
  x->x_fir_order = order;
}

static void FIR_tilde_dsp(t_FIR_tilde *x, t_signal **sp)
{
  FIR_tilde_set(x, x->x_table_name, x->x_fir_order);
  dsp_add(FIR_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, sp[0]->s_n);
}

static void *FIR_tilde_new(t_symbol *ref, t_floatarg np)
{
  t_FIR_tilde *x = (t_FIR_tilde *)pd_new(FIR_tilde_class);
  
  outlet_new(&x->x_obj, &s_signal);
  x->x_msi = 0;
  x->x_table_name = ref;
  x->x_coef_beg = 0;
  if((int)np < 1)
    np = 1.0;
  x->x_fir_order = (int)np;
  x->x_history_beg = (t_float *)getbytes((2*x->x_fir_order)*sizeof(t_float));
  x->x_rw_index = 0;
  return(x);
}

static void FIR_tilde_free(t_FIR_tilde *x)
{
  if(x->x_history_beg)
    freebytes(x->x_history_beg, (2*x->x_fir_order)*sizeof(t_float));
}

void FIR_tilde_setup(void)
{
  FIR_tilde_class = class_new(gensym("FIR~"), (t_newmethod)FIR_tilde_new,
    (t_method)FIR_tilde_free, sizeof(t_FIR_tilde), 0, A_DEFSYM, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(FIR_tilde_class, t_FIR_tilde, x_msi);
  class_addmethod(FIR_tilde_class, (t_method)FIR_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(FIR_tilde_class, (t_method)FIR_tilde_set,
    gensym("set"), A_SYMBOL, A_FLOAT, 0);
//  class_sethelpsymbol(FIR_tilde_class, gensym("iemhelp/help-FIR~"));
}

--- NEW FILE: split.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"


/* --------- split is like moses ----------- */

typedef struct _split
{
  t_object  x_obj;
  t_outlet  *x_out_less;
  t_outlet  *x_out_greater_equal;
  float     x_threshold;
} t_split;

static t_class *split_class;

static void split_float(t_split *x, t_float f)
{
  if(f < x->x_threshold)
    outlet_float(x->x_out_less, f);
  else
    outlet_float(x->x_out_greater_equal, f);
}

static void *split_new(t_floatarg f)
{
  t_split *x = (t_split *)pd_new(split_class);
  floatinlet_new(&x->x_obj, &x->x_threshold);
  x->x_out_less = outlet_new(&x->x_obj, &s_float);
  x->x_out_greater_equal = outlet_new(&x->x_obj, &s_float);
  x->x_threshold = f;
  return (x);
}

void split_setup(void)
{
  split_class = class_new(gensym("split"), (t_newmethod)split_new, 0,
    sizeof(t_split), 0, A_DEFFLOAT, 0);
  class_addfloat(split_class, split_float);
//  class_sethelpsymbol(split_class, gensym("iemhelp/help-split"));
}

--- NEW FILE: rvu~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ---------------- rvu~ - simple peak&rms-vu-meter. ----------------- */

typedef struct _rvu_tilde
{
  t_object  x_obj;
  void      *x_clock_metro;
  t_float   x_metro_time;
  t_float   x_sum_rms;
  t_float   x_old_rms;
  t_float   x_rcp;
  t_float   x_sr;
  t_float   x_release_time;
  t_float   x_c1;
  int       x_started;
  t_float   x_msi;
} t_rvu_tilde;

t_class *rvu_tilde_class;
static void rvu_tilde_tick_metro(t_rvu_tilde *x);

static void rvu_tilde_reset(t_rvu_tilde *x)
{
  outlet_float(x->x_obj.ob_outlet, -99.9f);
  x->x_sum_rms = 0.0f;
  x->x_old_rms = 0.0f;
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void rvu_tilde_stop(t_rvu_tilde *x)
{
  clock_unset(x->x_clock_metro);
  x->x_started = 0;
}

static void rvu_tilde_start(t_rvu_tilde *x)
{
  clock_delay(x->x_clock_metro, x->x_metro_time);
  x->x_started = 1;
}

static void rvu_tilde_float(t_rvu_tilde *x, t_floatarg f)
{
  if(f == 0.0f)
  {
    clock_unset(x->x_clock_metro);
    x->x_started = 0;
  }
  else
  {
    clock_delay(x->x_clock_metro, x->x_metro_time);
    x->x_started = 1;
  }
}

static void rvu_tilde_t_release(t_rvu_tilde *x, t_floatarg release_time)
{
  if(release_time <= 5.0f)
    release_time = 5.0f;
  x->x_release_time = release_time;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
}

static void rvu_tilde_t_metro(t_rvu_tilde *x, t_floatarg metro_time)
{
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  x->x_metro_time = metro_time;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
  x->x_rcp = 1.0f/(x->x_sr*x->x_metro_time);
}

static t_int *rvu_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_rvu_tilde *x = (t_rvu_tilde *)(w[2]);
  int n = (int)(w[3]);
  t_float sum=x->x_sum_rms;
  int i;
  
  if(x->x_started)
  {
    for(i=0; i<n; i++)
    {
      sum += in[i]*in[i];
    }
    x->x_sum_rms = sum;
  }
  return(w+4);
}

static void rvu_tilde_dsp(t_rvu_tilde *x, t_signal **sp)
{
  x->x_sr = 0.001*(t_float)sp[0]->s_sr;
  x->x_rcp = 1.0f/(x->x_sr*x->x_metro_time);
  dsp_add(rvu_tilde_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void rvu_tilde_tick_metro(t_rvu_tilde *x)
{
  t_float dbr, cur_rms, c1=x->x_c1;
  
  cur_rms = (1.0f - c1)*x->x_sum_rms*x->x_rcp + c1*x->x_old_rms;
  /* NAN protect */
  if(IEM_DENORMAL(cur_rms))
    cur_rms = 0.0f;
  
  if(cur_rms <= 0.0000000001f)
    dbr = -99.9f;
  else if(cur_rms > 1000000.0f)
  {
    dbr = 60.0f;
    x->x_old_rms = 1000000.0f;
  }
  else
    dbr = 4.3429448195f*log(cur_rms);
  x->x_sum_rms = 0.0f;
  x->x_old_rms = cur_rms;
  outlet_float(x->x_obj.ob_outlet, dbr);
  clock_delay(x->x_clock_metro, x->x_metro_time);
}

static void rvu_tilde_ff(t_rvu_tilde *x)
{
  clock_free(x->x_clock_metro);
}

static void *rvu_tilde_new(t_floatarg metro_time, t_floatarg release_time)
{
  t_rvu_tilde *x=(t_rvu_tilde *)pd_new(rvu_tilde_class);
  
  if(metro_time <= 0.0f)
    metro_time = 300.0f;
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  if(release_time <= 0.0f)
    release_time = 300.0f;
  if(release_time <= 5.0f)
    release_time = 5.0f;
  x->x_metro_time = metro_time;
  x->x_release_time = release_time;
  x->x_c1 = exp(-2.0f*x->x_metro_time/x->x_release_time);
  x->x_sum_rms = 0.0f;
  x->x_old_rms = 0.0f;
  x->x_sr = 44.1f;
  x->x_rcp = 1.0f/(x->x_sr*x->x_metro_time);
  x->x_clock_metro = clock_new(x, (t_method)rvu_tilde_tick_metro);
  x->x_started = 1;
  outlet_new(&x->x_obj, &s_float);
  x->x_msi = 0.0f;
  return(x);
}

void rvu_tilde_setup(void)
{
  rvu_tilde_class = class_new(gensym("rvu~"), (t_newmethod)rvu_tilde_new,
    (t_method)rvu_tilde_ff, sizeof(t_rvu_tilde), 0,
    A_DEFFLOAT, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(rvu_tilde_class, t_rvu_tilde, x_msi);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_dsp, gensym("dsp"), 0);
  class_addfloat(rvu_tilde_class, rvu_tilde_float);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_reset, gensym("reset"), 0);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_start, gensym("start"), 0);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_stop, gensym("stop"), 0);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_t_release, gensym("t_release"), A_FLOAT, 0);
  class_addmethod(rvu_tilde_class, (t_method)rvu_tilde_t_metro, gensym("t_metro"), A_FLOAT, 0);
//  class_sethelpsymbol(rvu_tilde_class, gensym("iemhelp/help-rvu~"));
}

--- NEW FILE: pvu~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */

#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ---------------- pvu~ - simple peak-vu-meter. ----------------- */

typedef struct _pvu_tilde
{
  t_object  x_obj;
  void      *x_outlet_meter;
  void      *x_outlet_over;
  void      *x_clock;
  t_float   x_cur_peak;
  t_float   x_old_peak;
  t_float   x_threshold_over;
  t_float   x_c1;
  t_float   x_metro_time;
  t_float   x_release_time;
  int       x_overflow_counter;
  int       x_started;
  t_float   x_msi;
} t_pvu_tilde;

t_class *pvu_tilde_class;
static void pvu_tilde_tick(t_pvu_tilde *x);

static void pvu_tilde_reset(t_pvu_tilde *x)
{
  outlet_float(x->x_outlet_over, 0.0f);
  outlet_float(x->x_outlet_meter, -199.9f);
  x->x_overflow_counter = 0;
  x->x_cur_peak = 0.0f;
  x->x_old_peak = 0.0f;
  clock_delay(x->x_clock, x->x_metro_time);
}

static void pvu_tilde_stop(t_pvu_tilde *x)
{
  clock_unset(x->x_clock);
  x->x_started = 0;
}

static void pvu_tilde_start(t_pvu_tilde *x)
{
  clock_delay(x->x_clock, x->x_metro_time);
  x->x_started = 1;
}

static void pvu_tilde_float(t_pvu_tilde *x, t_floatarg f)
{
  if(f == 0.0)
  {
    clock_unset(x->x_clock);
    x->x_started = 0;
  }
  else
  {
    clock_delay(x->x_clock, x->x_metro_time);
    x->x_started = 1;
  }
}

static void pvu_tilde_t_release(t_pvu_tilde *x, t_floatarg release_time)
{
  if(release_time <= 5.0f)
    release_time = 5.0f;
  x->x_release_time = release_time;
  x->x_c1 = exp(-x->x_metro_time/release_time);
}

static void pvu_tilde_t_metro(t_pvu_tilde *x, t_floatarg metro_time)
{
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  x->x_metro_time = (int)metro_time;
  x->x_c1 = exp(-metro_time/x->x_release_time);
}

static void pvu_tilde_threshold(t_pvu_tilde *x, t_floatarg thresh)
{
  x->x_threshold_over = thresh;
}

static t_int *pvu_tilde_perform(t_int *w)
{
  t_float *in = (t_float *)(w[1]);
  t_pvu_tilde *x = (t_pvu_tilde *)(w[2]);
  int n = (int)(w[3]);
  t_float peak = x->x_cur_peak;
  t_float absolute;
  int i;
  
  if(x->x_started)
  {
    for(i=0; i<n; i++)
    {
      absolute = fabs(*in++);
      if(absolute > peak)
        peak = absolute;
    }
    x->x_cur_peak = peak;
  }
  return(w+4);
}

static void pvu_tilde_dsp(t_pvu_tilde *x, t_signal **sp)
{
  dsp_add(pvu_tilde_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
  clock_delay(x->x_clock, x->x_metro_time);
}

static void pvu_tilde_tick(t_pvu_tilde *x)
{
  t_float db;
  int i;
  
  x->x_old_peak *= x->x_c1;
  /* NAN protect */
  if(IEM_DENORMAL(x->x_old_peak))
    x->x_old_peak = 0.0f;
  
  if(x->x_cur_peak > x->x_old_peak)
    x->x_old_peak = x->x_cur_peak;
  if(x->x_old_peak <= 0.0000000001f)
    db = -199.9f;
  else if(x->x_old_peak > 1000000.0f)
  {
    db = 120.0f;
    x->x_old_peak = 1000000.0f;
  }
  else
    db = 8.6858896381f*log(x->x_old_peak);
  if(db >= x->x_threshold_over)
  {
    x->x_overflow_counter++;
    outlet_float(x->x_outlet_over, (t_float)x->x_overflow_counter);
  }
  outlet_float(x->x_outlet_meter, db);
  x->x_cur_peak = 0.0f;
  clock_delay(x->x_clock, x->x_metro_time);
}

static void *pvu_tilde_new(t_floatarg metro_time, t_floatarg release_time, t_floatarg threshold)
{
  t_pvu_tilde *x;
  t_float t;
  
  x = (t_pvu_tilde *)pd_new(pvu_tilde_class);
  if(metro_time <= 0.0f)
    metro_time = 300.0f;
  if(metro_time <= 5.0f)
    metro_time = 5.0f;
  if(release_time <= 0.0f)
    release_time = 300.0f;
  if(release_time <= 5.0f)
    release_time = 5.0f;
  if(threshold == 0.0f)
    threshold = -0.01f;
  x->x_threshold_over = threshold;
  x->x_overflow_counter = 0;
  x->x_metro_time = metro_time;
  x->x_release_time = release_time;
  x->x_c1 = exp(-metro_time/release_time);
  x->x_cur_peak = 0.0f;
  x->x_old_peak = 0.0f;
  x->x_clock = clock_new(x, (t_method)pvu_tilde_tick);
  x->x_outlet_meter = outlet_new(&x->x_obj, &s_float);/* left */
  x->x_outlet_over = outlet_new(&x->x_obj, &s_float); /* right */
  x->x_started = 1;
  x->x_msi = 0;
  return(x);
}

static void pvu_tilde_ff(t_pvu_tilde *x)
{
  clock_free(x->x_clock);
}

void pvu_tilde_setup(void )
{
  pvu_tilde_class = class_new(gensym("pvu~"), (t_newmethod)pvu_tilde_new,
    (t_method)pvu_tilde_ff, sizeof(t_pvu_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
  CLASS_MAINSIGNALIN(pvu_tilde_class, t_pvu_tilde, x_msi);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_dsp, gensym("dsp"), 0);
  class_addfloat(pvu_tilde_class, pvu_tilde_float);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_reset, gensym("reset"), 0);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_start, gensym("start"), 0);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_stop, gensym("stop"), 0);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_t_release, gensym("t_release"), A_FLOAT, 0);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_t_metro, gensym("t_metro"), A_FLOAT, 0);
  class_addmethod(pvu_tilde_class, (t_method)pvu_tilde_threshold, gensym("threshold"), A_FLOAT, 0);
//  class_sethelpsymbol(pvu_tilde_class, gensym("iemhelp/help-pvu~"));
}

--- NEW FILE: iemlib1.dsp ---
# Microsoft Developer Studio Project File - Name="iemlib1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** NICHT BEARBEITEN **

# TARGTYPE "Win32 (x86) External Target" 0x0106

CFG=iemlib1 - Win32 Debug
!MESSAGE Dies ist kein gültiges Makefile. Zum Erstellen dieses Projekts mit NMAKE
!MESSAGE verwenden Sie den Befehl "Makefile exportieren" und führen Sie den Befehl
!MESSAGE 
!MESSAGE NMAKE /f "iemlib1.mak".
!MESSAGE 
!MESSAGE Sie können beim Ausführen von NMAKE eine Konfiguration angeben
!MESSAGE durch Definieren des Makros CFG in der Befehlszeile. Zum Beispiel:
!MESSAGE 
!MESSAGE NMAKE /f "iemlib1.mak" CFG="iemlib1 - Win32 Debug"
!MESSAGE 
!MESSAGE Für die Konfiguration stehen zur Auswahl:
!MESSAGE 
!MESSAGE "iemlib1 - Win32 Release" (basierend auf  "Win32 (x86) External Target")
!MESSAGE "iemlib1 - Win32 Debug" (basierend auf  "Win32 (x86) External Target")
!MESSAGE 

# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""

!IF  "$(CFG)" == "iemlib1 - Win32 Release"

# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Cmd_Line "NMAKE /f makefile_win"
# PROP BASE Rebuild_Opt "/a"
# PROP BASE Target_File "makefile_win.exe"
# PROP BASE Bsc_Name "makefile_win.bsc"
# PROP BASE Target_Dir ""
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Cmd_Line "NMAKE /f makefile_win"
# PROP Rebuild_Opt "/a"
# PROP Target_File "iemlib1.exe"
# PROP Bsc_Name "iemlib1.bsc"
# PROP Target_Dir ""

!ELSEIF  "$(CFG)" == "iemlib1 - Win32 Debug"

# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Cmd_Line "NMAKE /f makefile_win"
# PROP BASE Rebuild_Opt "/a"
# PROP BASE Target_File "makefile_win.exe"
# PROP BASE Bsc_Name "makefile_win.bsc"
# PROP BASE Target_Dir ""
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Cmd_Line "NMAKE /f makefile_win"
# PROP Rebuild_Opt "/a"
# PROP Target_File "iemlib1.exe"
# PROP Bsc_Name "iemlib1.bsc"
# PROP Target_Dir ""

!ENDIF 

# Begin Target

# Name "iemlib1 - Win32 Release"
# Name "iemlib1 - Win32 Debug"

!IF  "$(CFG)" == "iemlib1 - Win32 Release"

!ELSEIF  "$(CFG)" == "iemlib1 - Win32 Debug"

!ENDIF 

# Begin Source File

SOURCE=.\makefile_win
# End Source File
# End Target
# End Project

--- NEW FILE: for++.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"

/* ----------------------------- for++ -------------------------------- */
/* -- an internal timed counter (start-, stop-number and metro-time) -- */

typedef struct _forpp
{
  t_object  x_obj;
  int       x_beg;
  int       x_end;
  t_float   x_delay;
  int       x_cur;
  int       x_incr;
  void      *x_out_end;
  void      *x_clock;
  void      *x_clock2;
} t_forpp;

static t_class *forpp_class;

static void forpp_tick2(t_forpp *x)
{
  outlet_bang(x->x_out_end);
  clock_unset(x->x_clock2);
}

static void forpp_tick(t_forpp *x)
{
  outlet_float(x->x_obj.ob_outlet, x->x_cur);
  x->x_cur += x->x_incr;
  if(x->x_incr > 0)
  {
    if(x->x_cur <= x->x_end)
      clock_delay(x->x_clock, x->x_delay);
    else
    {
      clock_unset(x->x_clock);
      clock_delay(x->x_clock2, x->x_delay);
    }
  }
  else
  {
    if(x->x_cur >= x->x_end)
      clock_delay(x->x_clock, x->x_delay);
    else
    {
      clock_unset(x->x_clock);
      clock_delay(x->x_clock2, x->x_delay);
    }
  }
}

static void forpp_bang(t_forpp *x)
{
  x->x_cur = x->x_beg;
  outlet_float(x->x_obj.ob_outlet, x->x_cur);
  x->x_cur += x->x_incr;
  if(x->x_incr > 0)
  {
    if(x->x_cur <= x->x_end)
      clock_delay(x->x_clock, x->x_delay);
    else
    {
      clock_unset(x->x_clock);
      clock_delay(x->x_clock2, x->x_delay);
    }
  }
  else
  {
    if(x->x_cur >= x->x_end)
      clock_delay(x->x_clock, x->x_delay);
    else
    {
      clock_unset(x->x_clock);
      clock_delay(x->x_clock2, x->x_delay);
    }
  }
  
}

static void forpp_start(t_forpp *x)
{
  forpp_bang(x);
}

static void forpp_stop(t_forpp *x)
{
  if(x->x_incr > 0)
    x->x_cur = x->x_end + 1;
  else
    x->x_cur = x->x_end - 1;
  clock_unset(x->x_clock);
  clock_unset(x->x_clock2);
}

static void forpp_float(t_forpp *x, t_floatarg beg)
{
  x->x_beg = (int)beg;
  if(x->x_end < x->x_beg)
    x->x_incr = -1;
  else
    x->x_incr = 1;
}

static void forpp_ft1(t_forpp *x, t_floatarg end)
{
  x->x_end = (int)end;
  if(x->x_end < x->x_beg)
    x->x_incr = -1;
  else
    x->x_incr = 1;
}

static void forpp_ft2(t_forpp *x, t_floatarg delay)
{
  if(delay < 0.0)
    delay = 0.0;
  x->x_delay = delay;
}

static void forpp_list(t_forpp *x, t_symbol *s, int argc, t_atom *argv)
{
  if(argc == 2)
  {
    forpp_float(x, atom_getfloatarg(0, argc, argv));
    forpp_ft1(x, atom_getfloatarg(1, argc, argv));
  }
  else if(argc == 3)
  {
    forpp_float(x, atom_getfloatarg(0, argc, argv));
    forpp_ft1(x, atom_getfloatarg(1, argc, argv));
    forpp_ft2(x, atom_getfloatarg(2, argc, argv));
  }
}

static void *forpp_new(t_floatarg beg, t_floatarg end, t_floatarg delay)
{
  t_forpp *x = (t_forpp *)pd_new(forpp_class);
  
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
  inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
  outlet_new(&x->x_obj, &s_float);
  x->x_out_end = outlet_new(&x->x_obj, &s_bang);
  x->x_clock = clock_new(x, (t_method)forpp_tick);
  x->x_clock2 = clock_new(x, (t_method)forpp_tick2);
  x->x_beg = (int)beg;
  x->x_end = (int)end;
  if(x->x_end < x->x_beg)
    x->x_incr = -1;
  else
    x->x_incr = 1;
  if(delay < 0.0)
    delay = 0.0;
  x->x_delay = delay;
  x->x_cur = x->x_beg;
  return(x);
}

static void forpp_ff(t_forpp *x)
{
  clock_free(x->x_clock);
  clock_free(x->x_clock2);
}

void forpp_setup(void)
{
  forpp_class = class_new(gensym("for++"), (t_newmethod)forpp_new,
    (t_method)forpp_ff, sizeof(t_forpp),
    0, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
  class_addbang(forpp_class, forpp_bang);
  class_addfloat(forpp_class, forpp_float);
  class_addlist(forpp_class, forpp_list);
  class_addmethod(forpp_class, (t_method)forpp_start, gensym("start"), 0);
  class_addmethod(forpp_class, (t_method)forpp_stop, gensym("stop"), 0);
  class_addmethod(forpp_class, (t_method)forpp_ft1, gensym("ft1"), A_FLOAT, 0);
  class_addmethod(forpp_class, (t_method)forpp_ft2, gensym("ft2"), A_FLOAT, 0);
//  class_sethelpsymbol(forpp_class, gensym("iemhelp/help-for++"));
}

--- NEW FILE: iemlib1.dsw ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: v2db.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>


/* -------- v2db - a rms-value to techn. dB  converter. --------- */

static t_class *v2db_class;

t_float v2db(t_float f)
{
  return (f <= 0 ? -199.9 : 8.6858896381*log(f));
}

static void v2db_float(t_object *x, t_float f)
{
  outlet_float(x->ob_outlet, v2db(f));
}

static void *v2db_new(void)
{
  t_object *x = (t_object *)pd_new(v2db_class);
  outlet_new(x, &s_float);
  return (x);
}

void v2db_setup(void)
{
  v2db_class = class_new(gensym("v2db"), v2db_new, 0,
    sizeof(t_object), 0, 0);
  class_addfloat(v2db_class, (t_method)v2db_float);
//  class_sethelpsymbol(v2db_class, gensym("iemhelp/help-v2db"));
}

--- NEW FILE: f2note.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>

/* ------------------------- f2note ---------------------- */
/* ------ frequency to note plus cents converter --------- */

typedef struct _f2note
{
  t_object x_obj;
  void     *x_outlet_midi;
  void     *x_outlet_note;
  void     *x_outlet_cent;
  int      x_centomidi;
  t_float  x_refhz;
  t_float  x_refexp;
  t_float  x_reflog;
  t_symbol *x_set;
} t_f2note;

static t_class *f2note_class;

t_float f2note_mtof(t_f2note *x, t_float midi)
{
  return(x->x_refexp * exp(0.057762265047 * midi));
}

t_float f2note_ftom(t_f2note *x, t_float freq)
{
  return (freq > 0 ? 17.31234049 * log(x->x_reflog * freq) : -1500);
}

void f2note_calc_ref(t_f2note *x)
{
  t_float ln2=log(2.0);
  
  x->x_refexp = x->x_refhz*exp(-5.75*ln2);
  x->x_reflog = 1.0/x->x_refexp;
}

static void f2note_make_note(char *str, int midi)
{
  int j,k,l=0;
  
  j = midi / 12;
  k = midi % 12;
  if(k <= 5)
  {
    if(k <= 2)
    {
      if(k==0)
        str[l]='c';
      else if(k==1)
      {
        str[l++]='#';
        str[l]='c';
      }
      else
        str[l]='d';
    }
    else
    {
      if(k==3)
      {
        str[l++]='#';
        str[l]='d';
      }
      else if(k==4)
        str[l]='e';
      else
        str[l]='f';
    }
  }
  else
  {
    if(k <= 8)
    {
      if(k==6)
      {
        str[l++]='#';
        str[l]='f';
      }
      else if(k==7)
        str[l]='g';
      else
      {
        str[l++]='#';
        str[l]='g';
      }
    }
    else
    {
      if(k==9)
        str[l]='a';
      else if(k==10)
      {
        str[l++]='#';
        str[l]='a';
      }
      else
        str[l]='h';
    }
  }
  
  if(j < 4)
  {
    str[l] -= 'a';
    str[l] += 'A';
  }
  l++;
  if(j < 3)
  {
    str[l++] = '0' + (char)(3 - j);
  }
  else if(j > 4)
  {
    str[l++] = '0' + (char)(j - 4);
  }
  str[l] = 0;
}

static void f2note_bang(t_f2note *x)
{
  int i,j;
  t_atom at;
  char s[4];
  
  i = (x->x_centomidi + 50)/100;
  j = x->x_centomidi - 100*i;
  outlet_float(x->x_outlet_cent, (t_float)j);
  f2note_make_note(s, i);
  SETSYMBOL(&at, gensym(s));
  outlet_anything(x->x_outlet_note, x->x_set, 1, &at);
  outlet_float(x->x_outlet_midi, 0.01f*(t_float)(x->x_centomidi));
}

static void f2note_float(t_f2note *x, t_floatarg freq)
{
  x->x_centomidi = (int)(100.0f*f2note_ftom(x, freq) + 0.5f);
  f2note_bang(x);
}

void f2note_ref(t_f2note *x, t_floatarg ref)
{
  x->x_refhz = ref;
  f2note_calc_ref(x);
}

static void *f2note_new(t_floatarg ref)
{
  t_f2note *x = (t_f2note *)pd_new(f2note_class);
  
  if(ref == 0.0f)
    ref=440.0f;
  x->x_refhz = ref;
  x->x_centomidi = (int)(100.0f*ref + 0.499f);
  f2note_calc_ref(x);
  x->x_outlet_midi = outlet_new(&x->x_obj, &s_float);
  x->x_outlet_note = outlet_new(&x->x_obj, &s_list);
  x->x_outlet_cent = outlet_new(&x->x_obj, &s_float);
  x->x_set = gensym("set");
  return (x);
}

static void f2note_free(t_f2note *x)
{
}

void f2note_setup(void)
{
  f2note_class = class_new(gensym("f2note"), (t_newmethod)f2note_new, (t_method)f2note_free,
    sizeof(t_f2note), 0, A_DEFFLOAT, 0);
  class_addbang(f2note_class,f2note_bang);
  class_addfloat(f2note_class,f2note_float);
  class_addmethod(f2note_class, (t_method)f2note_ref, gensym("ref"), A_FLOAT, 0);
//  class_sethelpsymbol(f2note_class, gensym("iemhelp/help-f2note"));
}





More information about the Pd-cvs mailing list