[PD-cvs] externals/iem/iem_adaptfilt/src n_CLNLMS~.c, NONE, 1.1 n_CNLMS~.c, NONE, 1.1 NLMS~.c, NONE, 1.1 NLMSCC~.c, NONE, 1.1 iem_adaptfilt.c, 1.1, 1.2 makefile_lin, 1.1, 1.2 makefile.txt, 1.1, 1.2 makefile_win, 1.1, 1.2 makefile_win.txt, 1.1, 1.2

Georg Holzmann grholzi at users.sourceforge.net
Thu Jan 11 18:40:12 CET 2007


Update of /cvsroot/pure-data/externals/iem/iem_adaptfilt/src
In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv7807

Modified Files:
	iem_adaptfilt.c makefile_lin makefile.txt makefile_win 
	makefile_win.txt 
Added Files:
	n_CLNLMS~.c n_CNLMS~.c NLMS~.c NLMSCC~.c 
Log Message:
changed files to new naming convention


Index: makefile_lin
===================================================================
RCS file: /cvsroot/pure-data/externals/iem/iem_adaptfilt/src/makefile_lin,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** makefile_lin	2 Aug 2006 14:02:28 -0000	1.1
--- makefile_lin	11 Jan 2007 17:40:10 -0000	1.2
***************
*** 3,7 ****
  .SUFFIXES: .pd_linux
  
! INCLUDE = -I. -I/usr/local/src/pd-0.37-1/src
  
  LDFLAGS = -export-dynamic -shared
--- 3,7 ----
  .SUFFIXES: .pd_linux
  
! INCLUDE = -I. -I/usr/local/src/pd/src
  
  LDFLAGS = -export-dynamic -shared
***************
*** 10,14 ****
  #select either the DBG and OPT compiler flags below:
  
! CFLAGS = -DPD -DUNIX -W -Werror -Wno-unused \
  	-Wno-parentheses -Wno-switch -O6 -funroll-loops -fomit-frame-pointer \
          -DDL_OPEN
--- 10,14 ----
  #select either the DBG and OPT compiler flags below:
  
! CFLAGS = -DPD -DUNIX -W -Wno-unused \
  	-Wno-parentheses -Wno-switch -O6 -funroll-loops -fomit-frame-pointer \
          -DDL_OPEN
***************
*** 18,25 ****
  # the sources
  
! SRC = sigNLMS.c \
! 	sigNLMSCC.c \
! 	sign_CNLMS.c \
! 	sign_CLNLMS.c \
  	iem_adaptfilt.c
  
--- 18,25 ----
  # the sources
  
! SRC = NLMS~.c \
! 	NLMSCC~.c \
! 	n_CNLMS~.c \
! 	n_CLNLMS~.c \
  	iem_adaptfilt.c
  

Index: makefile_win.txt
===================================================================
RCS file: /cvsroot/pure-data/externals/iem/iem_adaptfilt/src/makefile_win.txt,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** makefile_win.txt	2 Aug 2006 14:02:28 -0000	1.1
--- makefile_win.txt	11 Jan 2007 17:40:10 -0000	1.2
***************
*** 22,29 ****
  
  
! SRC =	sigNLMS.c \
! 	sigNLMSCC.c \
! 	sign_CNLMS.c \
! 	sign_CLNLMS.c \
  	iem_adaptfilt.c
  
--- 22,29 ----
  
  
! SRC =	NLMS~.c \
! 	NLMSCC~.c \
! 	n_CNLMS~.c \
! 	n_CLNLMS~.c \
  	iem_adaptfilt.c
  

--- NEW FILE: n_CNLMS~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

n_CNLMS multichannel-constrained (non leaky) normalized LMS algorithm
lib iem_adaptfilt written by Markus Noisternig & Thomas Musil 
noisternig_AT_iem.at; musil_AT_iem.at
(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */

#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>


/* ----------------------- n_CNLMS~ ------------------------------ */
/* -- multi-channel Constraint Normalized Least Mean Square (linear adaptive FIR-filter) -- */

/* -- first input:  reference signal -- */
/* -- second input: desired signal -- */
/* --  -- */

/* for further information on adaptive filter design we refer to */
/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
/* [2] Benesty, "Adaptive Signal Processing", Springer */

typedef struct n_CNLMS_tilde_kern
{
  t_symbol            *x_w_array_sym_name;
  t_float             *x_w_array_mem_beg;
  t_float             *x_in_ptr_beg;// memory: sig-in vector
  t_float             *x_out_ptr_beg;// memory: sig-out vector
  t_float             *x_in_hist;// start point double buffer for sig-in history
} t_n_CNLMS_tilde_kern;


typedef struct n_CNLMS_tilde
{
  t_object            x_obj;
  t_n_CNLMS_tilde_kern   *x_my_kern;
  t_float             *x_des_in_ptr_beg;// memory: desired-in vector
  t_float             *x_err_out_ptr_beg;// memory: error-out vector
  t_int               x_n_io;// number of in-channels and filtered out-channels
  t_int               x_rw_index;// read-write-index
  t_int               x_n_order;// filter order
  t_int               x_update;// rounded by 2^n, yields downsampling of update rate
  t_float             x_beta;// learn rate [0 .. 2]
  t_float             x_gamma;// normalization
  t_float             x_kappa;// constraint: threshold of energy (clipping)
  t_outlet            *x_out_compressing_bang;
  t_clock             *x_clock;
  t_float             x_msi;
} t_n_CNLMS_tilde;

t_class *n_CNLMS_tilde_class;

static void n_CNLMS_tilde_tick(t_n_CNLMS_tilde *x)
{
  outlet_bang(x->x_out_compressing_bang);
}

static t_float *n_CNLMS_tilde_check_array(t_symbol *array_sym_name, t_int length)
{
  t_int n_points;
  t_garray *a;
  t_float *vec;
  
  if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
  {
    error("%s: no such array for n_CNLMS~", array_sym_name->s_name);
    return((t_float *)0);
  }
  else if(!garray_getfloatarray(a, &n_points, &vec))
  {
    error("%s: bad template for n_CNLMS~", array_sym_name->s_name);
    return((t_float *)0);
  }
  else if(n_points < length)
  {
    error("%s: bad array-size for n_CNLMS~: %d", array_sym_name->s_name, n_points);
    return((t_float *)0);
  }
  else
  {
    return(vec);
  }
}

static void n_CNLMS_tilde_beta(t_n_CNLMS_tilde *x, t_floatarg f) // learn rate
{
  if(f < 0.0f)
    f = 0.0f;
  if(f > 2.0f)
    f = 2.0f;
  
  x->x_beta = f;
}

static void n_CNLMS_tilde_gamma(t_n_CNLMS_tilde *x, t_floatarg f) // regularization (dither)
{
  if(f < 0.0f)
    f = 0.0f;
  if(f > 1.0f)
    f = 1.0f;
  
  x->x_gamma = f;
}

static void n_CNLMS_tilde_kappa(t_n_CNLMS_tilde *x, t_floatarg f) // threshold for w_coeff
{
  if(f < 0.0001f)
    f = 0.0001f;
  if(f > 10000.0f)
    f = 10000.0f;
  
  x->x_kappa = f;
}


static void n_CNLMS_tilde_update(t_n_CNLMS_tilde *x, t_floatarg f) // downsampling of learn rate
{
  t_int i=1, u = (t_int)f;
  
  if(u < 0)
    u = 0;
  else
  {
    while(i <= u)   // convert u for 2^N
      i *= 2;     // round downward
    i /= 2;
    u = i;
  }
  x->x_update = u;
}

/* ============== DSP ======================= */

static t_int *n_CNLMS_tilde_perform_zero(t_int *w)
{
  t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)(w[1]);
  t_int n = (t_int)(w[2]);
  
  t_int n_io = x->x_n_io;
  t_float *out;
  t_int i, j;
  
  out = x->x_err_out_ptr_beg;
  for(i=0; i<n; i++)
    *out++ = 0.0f;
  for(j=0; j<n_io; j++)
  {
    out = x->x_my_kern[j].x_out_ptr_beg;
    for(i=0; i<n; i++)
      *out++ = 0.0f;
  }
  return (w+3);
}

static t_int *n_CNLMS_tilde_perform(t_int *w)
{
  t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)(w[1]);
  t_int n = (t_int)(w[2]);
  t_int n_order = x->x_n_order;   /* filter-order */
  t_int rw_index2, rw_index = x->x_rw_index;
  t_int n_io = x->x_n_io;
  t_float *in;// first sig in
  t_float din;// second sig in
  t_float *filt_out;// first sig out
  t_float *err_out, err_sum;// second sig out
  t_float *read_in_hist;
  t_float *w_filt_coeff;
  t_float my, my_err, sum;
  t_float beta = x->x_beta;
  t_float hgamma, gamma = x->x_gamma;
  t_float hkappa, kappa = x->x_kappa;
  t_int i, j, k, update_counter;
  t_int update = x->x_update;
  t_int ord8=n_order&0xfffffff8;
  t_int ord_residual=n_order&0x7;
  t_int compressed = 0;
  
  for(k=0; k<n_io; k++)
  {
    if(!x->x_my_kern[k].x_w_array_mem_beg)
      goto n_CNLMS_tildeperfzero;// this is Musil/Miller style
  }

  hgamma = gamma * gamma * (float)n_order;
  //hkappa = kappa * kappa * (float)n_order;
  hkappa = kappa;// kappa regards to energy value, else use line above
  
  for(i=0, update_counter=0; i<n; i++)// history and (block-)convolution
  {
    rw_index2 = rw_index + n_order;

    for(k=0; k<n_io; k++)// times n_io
    {
      x->x_my_kern[k].x_in_hist[rw_index] = x->x_my_kern[k].x_in_ptr_beg[i]; // save inputs into variabel & history
      x->x_my_kern[k].x_in_hist[rw_index+n_order] = x->x_my_kern[k].x_in_ptr_beg[i];
    }
    din = x->x_des_in_ptr_beg[i];

// begin convolution
    err_sum = din;
    for(k=0; k<n_io; k++)// times n_io
    {
      sum = 0.0f;
      w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg; // Musil's special convolution buffer struct
      read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
      for(j=0; j<ord8; j+=8)	// loop unroll 8 taps
      {
        sum += w_filt_coeff[0] * read_in_hist[0];
        sum += w_filt_coeff[1] * read_in_hist[-1];
        sum += w_filt_coeff[2] * read_in_hist[-2];
        sum += w_filt_coeff[3] * read_in_hist[-3];
        sum += w_filt_coeff[4] * read_in_hist[-4];
        sum += w_filt_coeff[5] * read_in_hist[-5];
        sum += w_filt_coeff[6] * read_in_hist[-6];
        sum += w_filt_coeff[7] * read_in_hist[-7];
        w_filt_coeff += 8;
        read_in_hist -= 8;
      }
      for(j=0; j<ord_residual; j++)	// for filter order < 2^N
        sum += w_filt_coeff[j] * read_in_hist[-j];
        
      x->x_my_kern[k].x_out_ptr_beg[i] = sum;
      err_sum -= sum;
    }
    x->x_err_out_ptr_beg[i] = err_sum;
// end convolution

    if(update)	// downsampling of learn rate
    {
      update_counter++;
      if(update_counter >= update)
      {
        update_counter = 0;
        
        for(k=0; k<n_io; k++)// times n_io
        {
          sum = 0.0f;// calculate energy for last n-order samples in filter
          read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
          for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
          {
            sum += read_in_hist[0] * read_in_hist[0];
            sum += read_in_hist[-1] * read_in_hist[-1];
            sum += read_in_hist[-2] * read_in_hist[-2];
            sum += read_in_hist[-3] * read_in_hist[-3];
            sum += read_in_hist[-4] * read_in_hist[-4];
            sum += read_in_hist[-5] * read_in_hist[-5];
            sum += read_in_hist[-6] * read_in_hist[-6];
            sum += read_in_hist[-7] * read_in_hist[-7];
            read_in_hist -= 8;
          }
          for(j=0; j<ord_residual; j++)	// residual
            sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
          sum += hgamma; // convert gamma corresponding to filter order
          my = beta / sum;// calculate mue

          my_err = my * err_sum;
          w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
          read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
          sum = 0.0f;
          for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
          {
            w_filt_coeff[0] += read_in_hist[0] * my_err;
            sum += w_filt_coeff[0] * w_filt_coeff[0];
            w_filt_coeff[1] += read_in_hist[-1] * my_err;
            sum += w_filt_coeff[1] * w_filt_coeff[1];
            w_filt_coeff[2] += read_in_hist[-2] * my_err;
            sum += w_filt_coeff[2] * w_filt_coeff[2];
            w_filt_coeff[3] += read_in_hist[-3] * my_err;
            sum += w_filt_coeff[3] * w_filt_coeff[3];
            w_filt_coeff[4] += read_in_hist[-4] * my_err;
            sum += w_filt_coeff[4] * w_filt_coeff[4];
            w_filt_coeff[5] += read_in_hist[-5] * my_err;
            sum += w_filt_coeff[5] * w_filt_coeff[5];
            w_filt_coeff[6] += read_in_hist[-6] * my_err;
            sum += w_filt_coeff[6] * w_filt_coeff[6];
            w_filt_coeff[7] += read_in_hist[-7] * my_err;
            sum += w_filt_coeff[7] * w_filt_coeff[7];
            w_filt_coeff += 8;
            read_in_hist -= 8;
          }
          for(j=0; j<ord_residual; j++)	// residual
          {
            w_filt_coeff[j] += read_in_hist[-j] * my_err;
            sum += w_filt_coeff[j] * w_filt_coeff[j];
          }
          if(sum > hkappa)
          {
            compressed = 1;
            my = sqrt(hkappa/sum);
            w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
            for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
            {
              w_filt_coeff[0] *= my;
              w_filt_coeff[1] *= my;
              w_filt_coeff[2] *= my;
              w_filt_coeff[3] *= my;
              w_filt_coeff[4] *= my;
              w_filt_coeff[5] *= my;
              w_filt_coeff[6] *= my;
              w_filt_coeff[7] *= my;
              w_filt_coeff += 8;
            }
            for(j=0; j<ord_residual; j++)	// residual
              w_filt_coeff[j] *= my;
          }
        }
      }
    }
    rw_index++;
    if(rw_index >= n_order)
      rw_index -= n_order;
  }


  x->x_rw_index = rw_index; // back to start
  
  if(compressed)
    clock_delay(x->x_clock, 0);

  return(w+3);
  
n_CNLMS_tildeperfzero:

  err_out = x->x_err_out_ptr_beg;
  for(i=0; i<n; i++)
    *err_out++ = 0.0f;
  for(j=0; j<n_io; j++)
  {
    filt_out = x->x_my_kern[j].x_out_ptr_beg;
    for(i=0; i<n; i++)
      *filt_out++ = 0.0f;
  }

  return(w+3);
}

static void n_CNLMS_tilde_dsp(t_n_CNLMS_tilde *x, t_signal **sp)
{
  t_int i, n = sp[0]->s_n;
  t_int ok_w = 1;
  t_int m = x->x_n_io;

  for(i=0; i<m; i++)
    x->x_my_kern[i].x_in_ptr_beg = sp[i]->s_vec;
  x->x_des_in_ptr_beg = sp[m]->s_vec;
  for(i=0; i<m; i++)
    x->x_my_kern[i].x_out_ptr_beg = sp[i+m+1]->s_vec;
  x->x_err_out_ptr_beg = sp[2*m+1]->s_vec;

  for(i=0; i<m; i++)
  {
    x->x_my_kern[i].x_w_array_mem_beg = n_CNLMS_tilde_check_array(x->x_my_kern[i].x_w_array_sym_name, x->x_n_order);
    if(!x->x_my_kern[i].x_w_array_mem_beg)
      ok_w = 0;
  }
  
  if(!ok_w)
    dsp_add(n_CNLMS_tilde_perform_zero, 2, x, n);
  else
    dsp_add(n_CNLMS_tilde_perform, 2, x, n);
}


/* setup/setdown things */

static void n_CNLMS_tilde_free(t_n_CNLMS_tilde *x)
{
  t_int i, n_io=x->x_n_io, n_order=x->x_n_order;

  for(i=0; i<n_io; i++)
    freebytes(x->x_my_kern[i].x_in_hist, 2*x->x_n_order*sizeof(t_float));
  freebytes(x->x_my_kern, n_io*sizeof(t_n_CNLMS_tilde_kern));
  
  clock_free(x->x_clock);
}

static void *n_CNLMS_tilde_new(t_symbol *s, t_int argc, t_atom *argv)
{
  t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)pd_new(n_CNLMS_tilde_class);
  char buffer[400];
  t_int i, n_order=39, n_io=1;
  t_symbol    *w_name;
  t_float beta=0.1f;
  t_float gamma=0.00001f;
  t_float kappa = 1.0f;
  
  if((argc >= 6) &&
    IS_A_FLOAT(argv,0) &&   //IS_A_FLOAT/SYMBOL from iemlib.h
    IS_A_FLOAT(argv,1) &&
    IS_A_FLOAT(argv,2) &&
    IS_A_FLOAT(argv,3) &&
    IS_A_FLOAT(argv,4) &&
    IS_A_SYMBOL(argv,5))
  {
    n_io = (t_int)atom_getintarg(0, argc, argv);
    n_order = (t_int)atom_getintarg(1, argc, argv);
    beta    = (t_float)atom_getfloatarg(2, argc, argv);
    gamma   = (t_float)atom_getfloatarg(3, argc, argv);
    kappa   = (t_float)atom_getfloatarg(4, argc, argv);
    w_name  = (t_symbol *)atom_getsymbolarg(5, argc, argv);
    
    if(beta < 0.0f)
      beta = 0.0f;
    if(beta > 2.0f)
      beta = 2.0f;
    
    if(gamma < 0.0f)
      gamma = 0.0f;
    if(gamma > 1.0f)
      gamma = 1.0f;
    
    if(kappa < 0.0001f)
      kappa = 0.0001f;
    if(kappa > 10000.0f)
      kappa = 10000.0f;
    
    if(n_order < 2)
      n_order = 2;
    if(n_order > 11111)
      n_order = 11111;
    
    if(n_io < 1)
      n_io = 1;
    if(n_io > 60)
      n_io = 60;
    
    for(i=0; i<n_io; i++)
      inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
    for(i=0; i<=n_io; i++)
      outlet_new(&x->x_obj, &s_signal);
    
    x->x_out_compressing_bang = outlet_new(&x->x_obj, &s_bang);
    
    x->x_msi = 0;
    x->x_n_io = n_io;
    x->x_n_order = n_order;
    x->x_update = 0;
    x->x_beta = beta;
    x->x_gamma = gamma;
    x->x_kappa = kappa;
    x->x_my_kern = (t_n_CNLMS_tilde_kern *)getbytes(x->x_n_io*sizeof(t_n_CNLMS_tilde_kern));
    for(i=0; i<n_io; i++)
    {
      sprintf(buffer, "%d_%s", i+1, w_name->s_name);
      x->x_my_kern[i].x_w_array_sym_name = gensym(buffer);
      x->x_my_kern[i].x_w_array_mem_beg = (t_float *)0;
      x->x_my_kern[i].x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
    }
    x->x_clock = clock_new(x, (t_method)n_CNLMS_tilde_tick);
    
    return(x);
  }
  else
  {
    post("n_CNLMSC~-ERROR: need 5 float- + 1 symbol-arguments:");
    post("  number_of_filters + order_of_filters + learnrate_beta + security_value_gamma + threshold_kappa + array_name_taps");
    return(0);
  }
}

void n_CNLMS_tilde_setup(void)
{
  n_CNLMS_tilde_class = class_new(gensym("n_CNLMS~"), (t_newmethod)n_CNLMS_tilde_new, (t_method)n_CNLMS_tilde_free,
    sizeof(t_n_CNLMS_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(n_CNLMS_tilde_class, t_n_CNLMS_tilde, x_msi);
  class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
  class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
  class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_gamma, gensym("gamma"), A_FLOAT, 0);   // method: dithering noise related to signal
  class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_kappa, gensym("kappa"), A_FLOAT, 0);   // method: threshold for compressing w_coeff

  //class_sethelpsymbol(n_CNLMS_tilde_class, gensym("iemhelp2/n_CNLMS~"));
}

--- NEW FILE: n_CLNLMS~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

n_CLNLMS multichannel-constrained leaky normalized LMS algorithm
lib iem_adaptfilt written by Markus Noisternig & Thomas Musil 
noisternig_AT_iem.at; musil_AT_iem.at
(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */

#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>


/* ----------------------- n_CLNLMS~ ------------------------------ */
/* -- multiple Constraint LEAKY Normalized Least Mean Square (linear adaptive FIR-filter) -- */

//* -- first input:  reference signal -- */
/* -- second input: desired signal -- */
/* --  -- */

/* for further information on adaptive filter design we refer to */
/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
/* [2] Benesty, "Adaptive Signal Processing", Springer */

typedef struct n_CLNLMS_tilde_kern
{
  t_symbol            *x_w_array_sym_name;
  t_float             *x_w_array_mem_beg;
  t_float             *x_in_ptr_beg;// memory: sig-in vector
  t_float             *x_out_ptr_beg;// memory: sig-out vector
  t_float             *x_in_hist;// start point double buffer for sig-in history
} t_n_CLNLMS_tilde_kern;


typedef struct n_CLNLMS_tilde
{
  t_object            x_obj;
  t_n_CLNLMS_tilde_kern   *x_my_kern;
  t_float             *x_des_in_ptr_beg;// memory: desired-in vector
  t_float             *x_err_out_ptr_beg;// memory: error-out vector
  t_int               x_n_io;// number of in-channels and filtered out-channels
  t_int               x_rw_index;// read-write-index
  t_int               x_n_order;// filter order 
  t_int               x_update;// rounded by 2^n, yields downsampling of learn-rate
  t_float             x_beta;// learn rate [0 .. 2]
  t_float             x_gamma;// normalization
  t_float             x_kappa;// constreint: treshold of energy (clipping)
  t_float             x_leakage;// leakage-Faktor for NLMS
  t_outlet            *x_out_compressing_bang;
  t_clock             *x_clock;
  t_float             x_msi;
} t_n_CLNLMS_tilde;

t_class *n_CLNLMS_tilde_class;

static void n_CLNLMS_tilde_tick(t_n_CLNLMS_tilde *x)
{
  outlet_bang(x->x_out_compressing_bang);
}

static t_float *n_CLNLMS_tilde_check_array(t_symbol *array_sym_name, t_int length)
{
  t_int n_points;
  t_garray *a;
  t_float *vec;
  
  if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
  {
    error("%s: no such array for n_CLNLMS~", array_sym_name->s_name);
    return((t_float *)0);
  }
  else if(!garray_getfloatarray(a, &n_points, &vec))
  {
    error("%s: bad template for n_CLNLMS~", array_sym_name->s_name);
    return((t_float *)0);
  }
  else if(n_points < length)
  {
    error("%s: bad array-size for n_CLNLMS~: %d", array_sym_name->s_name, n_points);
    return((t_float *)0);
  }
  else
  {
    return(vec);
  }
}

static void n_CLNLMS_tilde_beta(t_n_CLNLMS_tilde *x, t_floatarg f) // learn rate
{
  if(f < 0.0f)
    f = 0.0f;
  if(f > 2.0f)
    f = 2.0f;
  
  x->x_beta = f;
}

static void n_CLNLMS_tilde_gamma(t_n_CLNLMS_tilde *x, t_floatarg f) // regularization (dither)
{
  if(f < 0.0f)
    f = 0.0f;
  if(f > 1.0f)
    f = 1.0f;
  
  x->x_gamma = f;
}

static void n_CLNLMS_tilde_kappa(t_n_CLNLMS_tilde *x, t_floatarg f) // threshold for w_coeff
{
  if(f < 0.0001f)
    f = 0.0001f;
  if(f > 10000.0f)
    f = 10000.0f;
  
  x->x_kappa = f;
}

static void n_CLNLMS_tilde_leakage(t_n_CLNLMS_tilde *x, t_floatarg f) // leakage of NLMS
{
  if(f < 0.0001f)
    f = 0.0001f;
  if(f > 1.0f)
    f = 1.0f;
  
  x->x_leakage = f;
}

static void n_CLNLMS_tilde_update(t_n_CLNLMS_tilde *x, t_floatarg f) // downsample learn rate
{
  t_int i=1, u = (t_int)f;
  
  if(u < 0)
    u = 0;
  else
  {
    while(i <= u)   // convert u for 2^N
      i *= 2;     // round down
    i /= 2;
    u = i;
  }
  x->x_update = u;
}

/* ============== DSP ======================= */

static t_int *n_CLNLMS_tilde_perform_zero(t_int *w)
{
  t_n_CLNLMS_tilde *x = (t_n_CLNLMS_tilde *)(w[1]);
  t_int n = (t_int)(w[2]);
  
  t_int n_io = x->x_n_io;
  t_float *out;
  t_int i, j;
  
  out = x->x_err_out_ptr_beg;
  for(i=0; i<n; i++)
    *out++ = 0.0f;
  for(j=0; j<n_io; j++)
  {
    out = x->x_my_kern[j].x_out_ptr_beg;
    for(i=0; i<n; i++)
      *out++ = 0.0f;
  }
  return (w+3);
}

static t_int *n_CLNLMS_tilde_perform(t_int *w)
{
  t_n_CLNLMS_tilde *x = (t_n_CLNLMS_tilde *)(w[1]);
  t_int n = (t_int)(w[2]);
  t_int n_order = x->x_n_order;   /* number of filter-order */
  t_int rw_index2, rw_index = x->x_rw_index;
  t_int n_io = x->x_n_io;
  t_float *in;// first sig in
  t_float din;// second sig in
  t_float *filt_out;// first sig out
  t_float *err_out, err_sum;// second sig out
  t_float *read_in_hist;
  t_float *w_filt_coeff;
  t_float my, my_err, sum;
  t_float beta = x->x_beta;
  t_float hgamma, gamma = x->x_gamma;
  t_float hkappa, kappa = x->x_kappa;
  t_float hleakage, leakage = x->x_leakage;
  t_int i, j, k, update_counter;
  t_int update = x->x_update;
  t_int ord8=n_order&0xfffffff8;
  t_int ord_residual=n_order&0x7;
  t_int compressed = 0;
  
  for(k=0; k<n_io; k++)
  {
    if(!x->x_my_kern[k].x_w_array_mem_beg)
      goto n_CLNLMS_tildeperfzero;// this is Musil/Miller style
  }

  hgamma = gamma * gamma * (float)n_order;
  //hkappa = kappa * kappa * (float)n_order;
  hkappa = kappa; // kappa regards to energy value, else use line above
  
  for(i=0, update_counter=0; i<n; i++)// history and (block-)convolution
  {
    rw_index2 = rw_index + n_order;

    for(k=0; k<n_io; k++)// times n_io
    {
      x->x_my_kern[k].x_in_hist[rw_index] = x->x_my_kern[k].x_in_ptr_beg[i]; // save inputs into variabel & history
      x->x_my_kern[k].x_in_hist[rw_index+n_order] = x->x_my_kern[k].x_in_ptr_beg[i];
    }
    din = x->x_des_in_ptr_beg[i];

// begin convolution
    err_sum = din;
    for(k=0; k<n_io; k++)// times n_io
    {
      sum = 0.0f;
      w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg; // Musil's special convolution buffer struct
      read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
      for(j=0; j<ord8; j+=8)	// loop unroll 8 taps
      {
        sum += w_filt_coeff[0] * read_in_hist[0];
        sum += w_filt_coeff[1] * read_in_hist[-1];
        sum += w_filt_coeff[2] * read_in_hist[-2];
        sum += w_filt_coeff[3] * read_in_hist[-3];
        sum += w_filt_coeff[4] * read_in_hist[-4];
        sum += w_filt_coeff[5] * read_in_hist[-5];
        sum += w_filt_coeff[6] * read_in_hist[-6];
        sum += w_filt_coeff[7] * read_in_hist[-7];
        w_filt_coeff += 8;
        read_in_hist -= 8;
      }
      for(j=0; j<ord_residual; j++)	// for filter order < 2^N
        sum += w_filt_coeff[j] * read_in_hist[-j];
        
      x->x_my_kern[k].x_out_ptr_beg[i] = sum;
      err_sum -= sum;
    }
    x->x_err_out_ptr_beg[i] = err_sum;
// end convolution

    if(update)	// downsampling of learn rate
    {
      update_counter++;
      if(update_counter >= update)
      {
        update_counter = 0;
        
        for(k=0; k<n_io; k++)// times n_io
        {
          sum = 0.0f;// calculate energy for last n-order samples in filter
          read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
          for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
          {
            sum += read_in_hist[0] * read_in_hist[0];
            sum += read_in_hist[-1] * read_in_hist[-1];
            sum += read_in_hist[-2] * read_in_hist[-2];
            sum += read_in_hist[-3] * read_in_hist[-3];
            sum += read_in_hist[-4] * read_in_hist[-4];
            sum += read_in_hist[-5] * read_in_hist[-5];
            sum += read_in_hist[-6] * read_in_hist[-6];
            sum += read_in_hist[-7] * read_in_hist[-7];
            read_in_hist -= 8;
          }
          for(j=0; j<ord_residual; j++)	// residual
            sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
          sum += hgamma; // convert gamma corresponding to filter order
          my = beta / sum;// calculate mue

          my_err = my * err_sum;
          w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
          read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
          sum = 0.0f;
          for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
          {
            w_filt_coeff[0] = leakage * w_filt_coeff[0] + read_in_hist[0] * my_err;
            sum += w_filt_coeff[0] * w_filt_coeff[0];
	    w_filt_coeff[1] = leakage * w_filt_coeff[1] + read_in_hist[-1] * my_err;
            sum += w_filt_coeff[1] * w_filt_coeff[1];
            w_filt_coeff[2] = leakage * w_filt_coeff[2] + read_in_hist[-2] * my_err;
            sum += w_filt_coeff[2] * w_filt_coeff[2];
	    w_filt_coeff[3] = leakage * w_filt_coeff[3] + read_in_hist[-3] * my_err;
            sum += w_filt_coeff[3] * w_filt_coeff[3];
            w_filt_coeff[4] = leakage * w_filt_coeff[4] + read_in_hist[-4] * my_err;
            sum += w_filt_coeff[4] * w_filt_coeff[4];
	    w_filt_coeff[5] = leakage * w_filt_coeff[5] + read_in_hist[-5] * my_err;
            sum += w_filt_coeff[5] * w_filt_coeff[5];
            w_filt_coeff[6] = leakage * w_filt_coeff[6] + read_in_hist[-6] * my_err;
            sum += w_filt_coeff[6] * w_filt_coeff[6];
	    w_filt_coeff[7] = leakage * w_filt_coeff[7] + read_in_hist[-7] * my_err;
            sum += w_filt_coeff[7] * w_filt_coeff[7];
            w_filt_coeff += 8;
            read_in_hist -= 8;
          }
          for(j=0; j<ord_residual; j++)	// residual
          {
            w_filt_coeff[j] = leakage * w_filt_coeff[j] + read_in_hist[-j] * my_err;
            sum += w_filt_coeff[j] * w_filt_coeff[j];
          }
          if(sum > hkappa)
          {
            compressed = 1;
            my = sqrt(hkappa/sum);
            w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
            for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
            {
              w_filt_coeff[0] *= my;
              w_filt_coeff[1] *= my;
              w_filt_coeff[2] *= my;
              w_filt_coeff[3] *= my;
              w_filt_coeff[4] *= my;
              w_filt_coeff[5] *= my;
              w_filt_coeff[6] *= my;
              w_filt_coeff[7] *= my;
              w_filt_coeff += 8;
            }
            for(j=0; j<ord_residual; j++)	// residual
              w_filt_coeff[j] *= my;
          }
        }
      }
    }
    rw_index++;
    if(rw_index >= n_order)
      rw_index -= n_order;
  }


  x->x_rw_index = rw_index; // wieder in die garage stellen
  
  if(compressed)
    clock_delay(x->x_clock, 0);

  return(w+3);
  
n_CLNLMS_tildeperfzero:

  err_out = x->x_err_out_ptr_beg;
  for(i=0; i<n; i++)
    *err_out++ = 0.0f;
  for(j=0; j<n_io; j++)
  {
    filt_out = x->x_my_kern[j].x_out_ptr_beg;
    for(i=0; i<n; i++)
      *filt_out++ = 0.0f;
  }

  return(w+3);
}

static void n_CLNLMS_tilde_dsp(t_n_CLNLMS_tilde *x, t_signal **sp)
{
  t_int i, n = sp[0]->s_n;
  t_int ok_w = 1;
  t_int m = x->x_n_io;

  for(i=0; i<m; i++)
    x->x_my_kern[i].x_in_ptr_beg = sp[i]->s_vec;
  x->x_des_in_ptr_beg = sp[m]->s_vec;
  for(i=0; i<m; i++)
    x->x_my_kern[i].x_out_ptr_beg = sp[i+m+1]->s_vec;
  x->x_err_out_ptr_beg = sp[2*m+1]->s_vec;

  for(i=0; i<m; i++)
  {
    x->x_my_kern[i].x_w_array_mem_beg = n_CLNLMS_tilde_check_array(x->x_my_kern[i].x_w_array_sym_name, x->x_n_order);
    if(!x->x_my_kern[i].x_w_array_mem_beg)
      ok_w = 0;
  }
  
  if(!ok_w)
    dsp_add(n_CLNLMS_tilde_perform_zero, 2, x, n);
  else
    dsp_add(n_CLNLMS_tilde_perform, 2, x, n);
}


/* setup/setdown things */

static void n_CLNLMS_tilde_free(t_n_CLNLMS_tilde *x)
{
  t_int i, n_io=x->x_n_io, n_order=x->x_n_order;

  for(i=0; i<n_io; i++)
    freebytes(x->x_my_kern[i].x_in_hist, 2*x->x_n_order*sizeof(t_float));
  freebytes(x->x_my_kern, n_io*sizeof(t_n_CLNLMS_tilde_kern));
  
  clock_free(x->x_clock);
}

static void *n_CLNLMS_tilde_new(t_symbol *s, t_int argc, t_atom *argv)
{
  t_n_CLNLMS_tilde *x = (t_n_CLNLMS_tilde *)pd_new(n_CLNLMS_tilde_class);
  char buffer[400];
  t_int i, n_order=39, n_io=1;
  t_symbol    *w_name;
  t_float beta=0.1f;
  t_float gamma=0.00001f;
  t_float kappa = 1.0f;
  t_float leakage = 0.99f;
  
  if((argc >= 7) &&
    IS_A_FLOAT(argv,0) &&   //IS_A_FLOAT/SYMBOL from iemlib.h
    IS_A_FLOAT(argv,1) &&
    IS_A_FLOAT(argv,2) &&
    IS_A_FLOAT(argv,3) &&
    IS_A_FLOAT(argv,4) &&
    IS_A_FLOAT(argv,5) &&
    IS_A_SYMBOL(argv,6))
  {
    n_io = (t_int)atom_getintarg(0, argc, argv);
    n_order = (t_int)atom_getintarg(1, argc, argv);
    beta    = (t_float)atom_getfloatarg(2, argc, argv);
    gamma   = (t_float)atom_getfloatarg(3, argc, argv);
    kappa   = (t_float)atom_getfloatarg(4, argc, argv);
    leakage   = (t_float)atom_getfloatarg(5, argc, argv);
    w_name  = (t_symbol *)atom_getsymbolarg(6, argc, argv);
    
    if(beta < 0.0f)
      beta = 0.0f;
    if(beta > 2.0f)
      beta = 2.0f;
    
    if(gamma < 0.0f)
      gamma = 0.0f;
    if(gamma > 1.0f)
      gamma = 1.0f;
    
    if(kappa < 0.0001f)
      kappa = 0.0001f;
    if(kappa > 10000.0f)
      kappa = 10000.0f;
    
    if(leakage < 0.0001f)
      leakage = 0.0001f;
    if(leakage > 1.0f)
      leakage = 1.0f;
      
    if(n_order < 2)
      n_order = 2;
    if(n_order > 11111)
      n_order = 11111;
    
    if(n_io < 1)
      n_io = 1;
    if(n_io > 60)
      n_io = 60;
    
    for(i=0; i<n_io; i++)
      inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
    for(i=0; i<=n_io; i++)
      outlet_new(&x->x_obj, &s_signal);
    
    x->x_out_compressing_bang = outlet_new(&x->x_obj, &s_bang);
    
    x->x_msi = 0;
    x->x_n_io = n_io;
    x->x_n_order = n_order;
    x->x_update = 0;
    x->x_beta = beta;
    x->x_gamma = gamma;
    x->x_kappa = kappa;
    x->x_leakage = leakage;
    x->x_my_kern = (t_n_CLNLMS_tilde_kern *)getbytes(x->x_n_io*sizeof(t_n_CLNLMS_tilde_kern));
    for(i=0; i<n_io; i++)
    {
      sprintf(buffer, "%d_%s", i+1, w_name->s_name);
      x->x_my_kern[i].x_w_array_sym_name = gensym(buffer);
      x->x_my_kern[i].x_w_array_mem_beg = (t_float *)0;
      x->x_my_kern[i].x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
    }
    x->x_clock = clock_new(x, (t_method)n_CLNLMS_tilde_tick);
    
    return(x);
  }
  else
  {
    post("n_CLNLMSC~-ERROR: need 6 float- + 1 symbol-arguments:");
    post("  number_of_filters + order_of_filters + learnrate_beta + security_value_gamma + threshold_kappa + leakage_factor_lambda + array_name_taps");
    return(0);
  }
}

void n_CLNLMS_tilde_setup(void)
{
  n_CLNLMS_tilde_class = class_new(gensym("n_CLNLMS~"), (t_newmethod)n_CLNLMS_tilde_new, (t_method)n_CLNLMS_tilde_free,
    sizeof(t_n_CLNLMS_tilde), 0, A_GIMME, 0);
  CLASS_MAINSIGNALIN(n_CLNLMS_tilde_class, t_n_CLNLMS_tilde, x_msi);
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_dsp, gensym("dsp"), 0);
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_gamma, gensym("gamma"), A_FLOAT, 0);   // method: dithering noise related to signal
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_kappa, gensym("kappa"), A_FLOAT, 0);   // method: threshold for compressing w_coeff
  class_addmethod(n_CLNLMS_tilde_class, (t_method)n_CLNLMS_tilde_leakage, gensym("leakage"), A_FLOAT, 0);   // method: leakage factor [0 1] for w update

  //class_sethelpsymbol(n_CLNLMS_tilde_class, gensym("iemhelp2/n_CLNLMS~"));
}

Index: makefile_win
===================================================================
RCS file: /cvsroot/pure-data/externals/iem/iem_adaptfilt/src/makefile_win,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** makefile_win	2 Aug 2006 14:02:28 -0000	1.1
--- makefile_win	11 Jan 2007 17:40:10 -0000	1.2
***************
*** 22,29 ****
  
  
! SRC =	sigNLMS.c \
! 	sigNLMSCC.c \
! 	sign_CNLMS.c \
! 	sign_CLNLMS.c \
  	iem_adaptfilt.c
  
--- 22,29 ----
  
  
! SRC =	NLMS~.c \
! 	NLMSCC~.c \
! 	n_CNLMS~.c \
! 	n_CLNLMS~.c \
  	iem_adaptfilt.c
  

--- NEW FILE: NLMS~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

NLMS normalized least mean square (LMS) algorithm
lib iem_adaptfilt written by Markus Noisternig & Thomas Musil 
noisternig_AT_iem.at; musil_AT_iem.at
(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */

#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>


/* ----------------------- NLMS~ ------------------------------ */
/* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */
/* -- first input:  reference signal -- */
/* -- second input: desired signal -- */
/* --  -- */

/* for further information on adaptive filter design we refer to */
/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
/* [2] Benesty, "Adaptive Signal Processing", Springer */


typedef struct NLMS_tilde
{
    t_object            x_obj;
    t_symbol            *x_w_array_sym_name;
    t_float             *x_w_array_mem_beg;
    t_float             *x_io_ptr_beg[4];// memory: 2 sig-in and 2 sig-out vectors
    t_float             *x_in_hist;// start point double buffer for sig-in history
    t_int               x_rw_index;// read-write-index
    t_int               x_n_order;// order of filter
    t_int               x_update;// 2^n rounded value, downsampling of update speed
    t_float             x_beta;// learn rate [0 .. 2]
    t_float             x_gamma;// regularization
    t_float             x_msi;
} t_NLMS_tilde;

t_class *NLMS_tilde_class;

static t_float *NLMS_tilde_check_array(t_symbol *array_sym_name, t_int length)
{
    t_int n_points;
    t_garray *a;
    t_float *vec;

    if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
    {
        error("%s: no such array for NLMS~", array_sym_name->s_name);
        return((t_float *)0);
    }
    else if(!garray_getfloatarray(a, &n_points, &vec))
    {
        error("%s: bad template for NLMS~", array_sym_name->s_name);
        return((t_float *)0);
    }
    else if(n_points < length)
    {
        error("%s: bad array-size for NLMS~: %d", array_sym_name->s_name, n_points);
        return((t_float *)0);
    }
    else
    {
        return(vec);
    }
}

static void NLMS_tilde_beta(t_NLMS_tilde *x, t_floatarg f) // learn rate
{
    if(f < 0.0f)
        f = 0.0f;
    if(f > 2.0f)
        f = 2.0f;
    
    x->x_beta = f;
}

static void NLMS_tilde_gamma(t_NLMS_tilde *x, t_floatarg f) // regularization factor (dither)
{
    if(f < 0.0f)
        f = 0.0f;
    if(f > 1.0f)
        f = 1.0f;
    
    x->x_gamma = f;
}


static void NLMS_tilde_update(t_NLMS_tilde *x, t_floatarg f) // downsample learn-rate
{
    t_int i=1, u = (t_int)f;
    
    if(u < 0)
        u = 0;
    else
    {
        while(i <= u)   // convert u for 2^N
            i *= 2;     // round downwards
        i /= 2;
        u = i;
    }
    x->x_update = u;
}

/* ============== DSP ======================= */

static t_int *NLMS_tilde_perform_zero(t_int *w)
{
    t_NLMS_tilde *x = (t_NLMS_tilde *)(w[1]);
    t_int n = (t_int)(w[2]);
    
    t_float **io = x->x_io_ptr_beg;
    t_float *out;
    t_int i, j;
    
    for(j=0; j<2; j++)/* output-vector-row */
    {
        out = io[j+2];
        for(i=0; i<n; i++)
        {
            *out++ = 0.0f;
        }
    }
    return (w+3);
}

static t_int *NLMS_tilde_perform(t_int *w)
{
    t_NLMS_tilde *x = (t_NLMS_tilde *)(w[1]);
    t_int n = (t_int)(w[2]);
    t_int n_order = x->x_n_order;   /* number of filter-order */
    t_int rw_index = x->x_rw_index;
    t_float *in = x->x_io_ptr_beg[0];// first sig in
    t_float *desired_in = x->x_io_ptr_beg[1], din;// second sig in
    t_float *filt_out = x->x_io_ptr_beg[2];// first sig out
    t_float *err_out = x->x_io_ptr_beg[3], eout;// second sig out
    t_float *write_in_hist1 = x->x_in_hist;
    t_float *write_in_hist2 = write_in_hist1+n_order;
    t_float *read_in_hist = write_in_hist2;
    t_float *w_filt_coeff = x->x_w_array_mem_beg;
    t_float my, my_err, sum;
    t_float beta = x->x_beta;
    t_float gamma = x->x_gamma;
    t_int i, j, update_counter;
    t_int update = x->x_update;
    t_int ord8=n_order&0xfffffff8;
    t_int ord_residual=n_order&0x7;
    
    if(!w_filt_coeff)
        goto NLMS_tildeperfzero;// this is quick&dirty Musil/Miller style
    
    for(i=0, update_counter=0; i<n; i++)// store history and convolve
    {
        write_in_hist1[rw_index] = in[i]; // save inputs to variable & history
        write_in_hist2[rw_index] = in[i];
        din = desired_in[i];
        
		// begin convolution
        sum = 0.0f;
        w_filt_coeff = x->x_w_array_mem_beg; // Musil's special convolution buffer struct
        read_in_hist = &write_in_hist2[rw_index];
        for(j=0; j<ord8; j+=8)	// loop unroll 8 taps
        {
            sum += w_filt_coeff[0] * read_in_hist[0];
            sum += w_filt_coeff[1] * read_in_hist[-1];
            sum += w_filt_coeff[2] * read_in_hist[-2];
            sum += w_filt_coeff[3] * read_in_hist[-3];
            sum += w_filt_coeff[4] * read_in_hist[-4];
            sum += w_filt_coeff[5] * read_in_hist[-5];
            sum += w_filt_coeff[6] * read_in_hist[-6];
            sum += w_filt_coeff[7] * read_in_hist[-7];
            w_filt_coeff += 8;
            read_in_hist -= 8;
        }
        for(j=0; j<ord_residual; j++)	// for filter order < 2^N
            sum += w_filt_coeff[j] * read_in_hist[-j];
        
        filt_out[i] = sum;
        eout = din - filt_out[i];	// buffer-struct for further use
        err_out[i] = eout;
        
        if(update)	// downsampling for learn rate
        {
            update_counter++;
            if(update_counter >= update)
            {
                update_counter = 0;
                
                sum = 0.0f;// calculate energy for last n-order samples in filter
                read_in_hist = &write_in_hist2[rw_index];
                for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
                {
                    sum += read_in_hist[0] * read_in_hist[0];
                    sum += read_in_hist[-1] * read_in_hist[-1];
                    sum += read_in_hist[-2] * read_in_hist[-2];
                    sum += read_in_hist[-3] * read_in_hist[-3];
                    sum += read_in_hist[-4] * read_in_hist[-4];
                    sum += read_in_hist[-5] * read_in_hist[-5];
                    sum += read_in_hist[-6] * read_in_hist[-6];
                    sum += read_in_hist[-7] * read_in_hist[-7];
                    read_in_hist -= 8;
                }
                for(j=0; j<ord_residual; j++)	// residual
                    sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
                sum += gamma * gamma * (float)n_order; // convert gamma corresponding to filter order
                my = beta / sum;// calculate mue
                
                
                my_err = my * eout;
                w_filt_coeff = x->x_w_array_mem_beg; // coefficient constraints
                read_in_hist = &write_in_hist2[rw_index];
                for(j=0; j<n_order; j++) // without unroll
                    w_filt_coeff[j] += read_in_hist[-j] * my_err;
            }
        }
        rw_index++;
        if(rw_index >= n_order)
            rw_index -= n_order;
    }

    x->x_rw_index = rw_index; // back to start

    return(w+3);
    
NLMS_tildeperfzero:
    
    while(n--)
    {
        *filt_out++ = 0.0f;
        *err_out++ = 0.0f;
    }
    return(w+3);
}

static void NLMS_tilde_dsp(t_NLMS_tilde *x, t_signal **sp)
{
    t_int i, n = sp[0]->s_n;
    
    for(i=0; i<4; i++) // store io_vec
        x->x_io_ptr_beg[i] = sp[i]->s_vec;
    
    x->x_w_array_mem_beg = NLMS_tilde_check_array(x->x_w_array_sym_name, x->x_n_order);

    if(!x->x_w_array_mem_beg)
        dsp_add(NLMS_tilde_perform_zero, 2, x, n);
    else
        dsp_add(NLMS_tilde_perform, 2, x, n);
}


/* setup/setdown things */

static void NLMS_tilde_free(t_NLMS_tilde *x)
{
    freebytes(x->x_in_hist, 2*x->x_n_order*sizeof(t_float));
}

static void *NLMS_tilde_new(t_symbol *s, t_int argc, t_atom *argv)
{
    t_NLMS_tilde *x = (t_NLMS_tilde *)pd_new(NLMS_tilde_class);
    t_int i, n_order=39;
    t_symbol    *w_name;
    t_float beta=0.1f;
    t_float gamma=0.00001f;
    
    if((argc >= 4) &&
        IS_A_FLOAT(argv,0) &&   //IS_A_FLOAT/SYMBOL from iemlib.h
        IS_A_FLOAT(argv,1) &&
        IS_A_FLOAT(argv,2) &&
        IS_A_SYMBOL(argv,3))
    {
        n_order = (t_int)atom_getintarg(0, argc, argv);
        beta    = (t_float)atom_getfloatarg(1, argc, argv);
        gamma   = (t_float)atom_getfloatarg(2, argc, argv);
        w_name  = (t_symbol *)atom_getsymbolarg(3, argc, argv);
        
        if(beta < 0.0f)
            beta = 0.0f;
        if(beta > 2.0f)
            beta = 2.0f;
        
        if(gamma < 0.0f)
            gamma = 0.0f;
        if(gamma > 1.0f)
            gamma = 1.0f;
        
        if(n_order < 2)
            n_order = 2;
        if(n_order > 11111)
            n_order = 11111;
        
        inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
        outlet_new(&x->x_obj, &s_signal);
        outlet_new(&x->x_obj, &s_signal);
        
        x->x_msi = 0;
        x->x_n_order = n_order;
        x->x_update = 0;
        x->x_beta = beta;
        x->x_gamma = gamma;
        // 2 times in and one time desired_in memory allocation (history)
        x->x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
        
        // table-symbols will be linked to their memory in future (dsp_routine)
        x->x_w_array_sym_name = gensym(w_name->s_name);
        x->x_w_array_mem_beg = (t_float *)0;
        
        return(x);
    }
    else
    {
        post("NLMS~-ERROR: need 3 float- + 1 symbol-arguments:");
        post("  order_of_filter + learnrate_beta + security_value + array_name_taps");
        return(0);
    }
}

void NLMS_tilde_setup(void)
{
    NLMS_tilde_class = class_new(gensym("NLMS~"), (t_newmethod)NLMS_tilde_new, (t_method)NLMS_tilde_free,
        sizeof(t_NLMS_tilde), 0, A_GIMME, 0);
    CLASS_MAINSIGNALIN(NLMS_tilde_class, t_NLMS_tilde, x_msi);
    class_addmethod(NLMS_tilde_class, (t_method)NLMS_tilde_dsp, gensym("dsp"), 0);
    class_addmethod(NLMS_tilde_class, (t_method)NLMS_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
    class_addmethod(NLMS_tilde_class, (t_method)NLMS_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
    class_addmethod(NLMS_tilde_class, (t_method)NLMS_tilde_gamma, gensym("gamma"), A_FLOAT, 0);   // method: dithering noise related to signal

    //class_sethelpsymbol(NLMS_tilde_class, gensym("iemhelp2/NLMS~"));
}

--- NEW FILE: NLMSCC~.c ---
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.

NLMSCC normalized LMS algorithm with coefficient constraints
lib iem_adaptfilt written by Markus Noisternig & Thomas Musil 
noisternig_AT_iem.at; musil_AT_iem.at
(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */

#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif


#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>


/* ----------------------- NLMSCC~ ------------------------------ */
/* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */
/* --   with Coefficient Constraint
/* -- first input:  reference signal -- */
/* -- second input: desired signal -- */
/* --  -- */
/* for further information on adaptive filter design we refer to */
/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
/* [2] Benesty, "Adaptive Signal Processing", Springer */
/*  */


typedef struct NLMSCC_tilde
{
    t_object            x_obj;
    t_symbol            *x_w_array_sym_name;
    t_float             *x_w_array_mem_beg;
    t_symbol            *x_wmin_array_sym_name;
    t_float             *x_wmin_array_mem_beg;
    t_symbol            *x_wmax_array_sym_name;
    t_float             *x_wmax_array_mem_beg;
    t_float             *x_io_ptr_beg[4];// memory: 2 sig-in and 2 sig-out vectors
    t_float             *x_in_hist;// start point double buffer for sig-in history
    t_int               x_rw_index;// read-write-index
    t_int               x_n_order;// order of filter
    t_int               x_update;// 2^n rounded value, downsampling of update speed
    t_float             x_beta;// learn rate [0 .. 2]
    t_float             x_gamma;// regularization
    t_outlet            *x_out_clipping_bang;
    t_clock             *x_clock;
    t_float             x_msi;
} t_NLMSCC_tilde;

t_class *NLMSCC_tilde_class;

static void NLMSCC_tilde_tick(t_NLMSCC_tilde *x)
{
    outlet_bang(x->x_out_clipping_bang);
}

static t_float *NLMSCC_tilde_check_array(t_symbol *array_sym_name, t_int length)
{
    t_int n_points;
    t_garray *a;
    t_float *vec;

    if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
    {
        error("%s: no such array for NLMSCC~", array_sym_name->s_name);
        return((t_float *)0);
    }
    else if(!garray_getfloatarray(a, &n_points, &vec))
    {
        error("%s: bad template for NLMSCC~", array_sym_name->s_name);
        return((t_float *)0);
    }
    else if(n_points < length)
    {
        error("%s: bad array-size for NLMSCC~: %d", array_sym_name->s_name, n_points);
        return((t_float *)0);
    }
    else
    {
        return(vec);
    }
}

static void NLMSCC_tilde_beta(t_NLMSCC_tilde *x, t_floatarg f) // learn rate
{
    if(f < 0.0f)
        f = 0.0f;
    if(f > 2.0f)
        f = 2.0f;
    
    x->x_beta = f;
}

static void NLMSCC_tilde_gamma(t_NLMSCC_tilde *x, t_floatarg f) // regularization factor (dither)
{
    if(f < 0.0f)
        f = 0.0f;
    if(f > 1.0f)
        f = 1.0f;
    
    x->x_gamma = f;
}


static void NLMSCC_tilde_update(t_NLMSCC_tilde *x, t_floatarg f) // downsample of learn-rate
{
    t_int i=1, u = (t_int)f;
    
    if(u < 0)
        u = 0;
    else
    {
        while(i <= u)   // convert u for 2^N
            i *= 2;     // round downwards
        i /= 2;
        u = i;
    }
    x->x_update = u;
}

/* ============== DSP ======================= */

static t_int *NLMSCC_tilde_perform_zero(t_int *w)
{
    t_NLMSCC_tilde *x = (t_NLMSCC_tilde *)(w[1]);
    t_int n = (t_int)(w[2]);
    
    t_float **io = x->x_io_ptr_beg;
    t_float *out;
    t_int i, j;
    
    for(j=0; j<2; j++)/* output-vector-row */
    {
        out = io[j+2];
        for(i=0; i<n; i++)
        {
            *out++ = 0.0f;
        }
    }
    return (w+3);
}

static t_int *NLMSCC_tilde_perform(t_int *w)
{
    t_NLMSCC_tilde *x = (t_NLMSCC_tilde *)(w[1]);
    t_int n = (t_int)(w[2]);
    t_int n_order = x->x_n_order;   /* filter-order */
    t_int rw_index = x->x_rw_index;
    t_float *in = x->x_io_ptr_beg[0];// first sig in
    t_float *desired_in = x->x_io_ptr_beg[1], din;// second sig in
    t_float *filt_out = x->x_io_ptr_beg[2];// first sig out
    t_float *err_out = x->x_io_ptr_beg[3], eout;// second sig out
    t_float *write_in_hist1 = x->x_in_hist;
    t_float *write_in_hist2 = write_in_hist1+n_order;
    t_float *read_in_hist = write_in_hist2;
    t_float *w_filt_coeff = x->x_w_array_mem_beg;
    t_float *wmin_filt_coeff = x->x_wmin_array_mem_beg;
    t_float *wmax_filt_coeff = x->x_wmax_array_mem_beg;
    t_float my, my_err, sum;
    t_float beta = x->x_beta;
    t_float gamma = x->x_gamma;
    t_int i, j, update_counter;
    t_int update = x->x_update;
    t_int ord8=n_order&0xfffffff8;
    t_int ord_residual=n_order&0x7;
    t_int clipped = 0;
    
    if(!w_filt_coeff)
        goto NLMSCC_tildeperfzero;// this is Musil/Miller style
    if(!wmin_filt_coeff)
        goto NLMSCC_tildeperfzero;
    if(!wmax_filt_coeff)
        goto NLMSCC_tildeperfzero;// if not constrained, perform zero
    
    for(i=0, update_counter=0; i<n; i++)// store in history and convolve
    {
        write_in_hist1[rw_index] = in[i]; // save inputs into variabel & history
        write_in_hist2[rw_index] = in[i];
        din = desired_in[i];
        
		// begin convolution
        sum = 0.0f;
        w_filt_coeff = x->x_w_array_mem_beg; // Musil's special convolution buffer struct
        read_in_hist = &write_in_hist2[rw_index];
        for(j=0; j<ord8; j+=8)	// loop unroll 8 taps
        {
            sum += w_filt_coeff[0] * read_in_hist[0];
            sum += w_filt_coeff[1] * read_in_hist[-1];
            sum += w_filt_coeff[2] * read_in_hist[-2];
            sum += w_filt_coeff[3] * read_in_hist[-3];
            sum += w_filt_coeff[4] * read_in_hist[-4];
            sum += w_filt_coeff[5] * read_in_hist[-5];
            sum += w_filt_coeff[6] * read_in_hist[-6];
            sum += w_filt_coeff[7] * read_in_hist[-7];
            w_filt_coeff += 8;
            read_in_hist -= 8;
        }
        for(j=0; j<ord_residual; j++)	// for filter order < 2^N
            sum += w_filt_coeff[j] * read_in_hist[-j];
        
        filt_out[i] = sum;
        eout = din - filt_out[i];	// buffer-struct for further use
        err_out[i] = eout;
        
        if(update)	// downsampling for learn rate
        {
            update_counter++;
            if(update_counter >= update)
            {
                update_counter = 0;
                
                sum = 0.0f;// calculate energy for last n-order samples in filter
                read_in_hist = &write_in_hist2[rw_index];
                for(j=0; j<ord8; j+=8)	// unrolling quadrature calc
                {
                    sum += read_in_hist[0] * read_in_hist[0];
                    sum += read_in_hist[-1] * read_in_hist[-1];
                    sum += read_in_hist[-2] * read_in_hist[-2];
                    sum += read_in_hist[-3] * read_in_hist[-3];
                    sum += read_in_hist[-4] * read_in_hist[-4];
                    sum += read_in_hist[-5] * read_in_hist[-5];
                    sum += read_in_hist[-6] * read_in_hist[-6];
                    sum += read_in_hist[-7] * read_in_hist[-7];
                    read_in_hist -= 8;
                }
                for(j=0; j<ord_residual; j++)	// residual
                    sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
                sum += gamma * gamma * (float)n_order; // convert gamma corresponding to filter order
                my = beta / sum;// calculate mue
                
                
                my_err = my * eout;
                w_filt_coeff = x->x_w_array_mem_beg; // coefficient constraints
                wmin_filt_coeff = x->x_wmin_array_mem_beg;
                wmax_filt_coeff = x->x_wmax_array_mem_beg;
                read_in_hist = &write_in_hist2[rw_index];
                for(j=0; j<n_order; j++) // without unroll
                {
                    w_filt_coeff[j] += read_in_hist[-j] * my_err;
                    if(w_filt_coeff[j] > wmax_filt_coeff[j])
                    {
                        w_filt_coeff[j] = wmax_filt_coeff[j];
                        clipped = 1;
                    }
                    else if(w_filt_coeff[j] < wmin_filt_coeff[j])
                    {
                        w_filt_coeff[j] = wmin_filt_coeff[j];
                        clipped = 1;
                    }
                }
            }
        }
        rw_index++;
        if(rw_index >= n_order)
            rw_index -= n_order;
    }

    x->x_rw_index = rw_index; // back to start

    if(clipped)
        clock_delay(x->x_clock, 0);
    return(w+3);
    
NLMSCC_tildeperfzero:
    
    while(n--)
    {
        *filt_out++ = 0.0f;
        *err_out++ = 0.0f;
    }
    return(w+3);
}

static void NLMSCC_tilde_dsp(t_NLMSCC_tilde *x, t_signal **sp)
{
    t_int i, n = sp[0]->s_n;
    
    for(i=0; i<4; i++) // store io_vec
        x->x_io_ptr_beg[i] = sp[i]->s_vec;
    
    x->x_w_array_mem_beg = NLMSCC_tilde_check_array(x->x_w_array_sym_name, x->x_n_order);
    x->x_wmin_array_mem_beg = NLMSCC_tilde_check_array(x->x_wmin_array_sym_name, x->x_n_order);
    x->x_wmax_array_mem_beg = NLMSCC_tilde_check_array(x->x_wmax_array_sym_name, x->x_n_order);

    if(!(x->x_w_array_mem_beg && x->x_wmin_array_mem_beg && x->x_wmax_array_mem_beg))
        dsp_add(NLMSCC_tilde_perform_zero, 2, x, n);
    else
        dsp_add(NLMSCC_tilde_perform, 2, x, n);
}


/* setup/setdown things */

static void NLMSCC_tilde_free(t_NLMSCC_tilde *x)
{
    
    freebytes(x->x_in_hist, 2*x->x_n_order*sizeof(t_float));
    
    clock_free(x->x_clock);
}

static void *NLMSCC_tilde_new(t_symbol *s, t_int argc, t_atom *argv)
{
    t_NLMSCC_tilde *x = (t_NLMSCC_tilde *)pd_new(NLMSCC_tilde_class);
    t_int i, n_order=39;
    t_symbol    *w_name;
    t_symbol    *wmin_name;
    t_symbol    *wmax_name;
    t_float beta=0.1f;
    t_float gamma=0.00001f;
    
    if((argc >= 6) &&
        IS_A_FLOAT(argv,0) &&   //IS_A_FLOAT/SYMBOL from iemlib.h
        IS_A_FLOAT(argv,1) &&
        IS_A_FLOAT(argv,2) &&
        IS_A_SYMBOL(argv,3) &&
        IS_A_SYMBOL(argv,4) &&
        IS_A_SYMBOL(argv,5))
    {
        n_order = (t_int)atom_getintarg(0, argc, argv);
        beta    = (t_float)atom_getfloatarg(1, argc, argv);
        gamma   = (t_float)atom_getfloatarg(2, argc, argv);
        w_name  = (t_symbol *)atom_getsymbolarg(3, argc, argv);
        wmin_name  = (t_symbol *)atom_getsymbolarg(4, argc, argv);
        wmax_name  = (t_symbol *)atom_getsymbolarg(5, argc, argv);
        
        if(beta < 0.0f)
            beta = 0.0f;
        if(beta > 2.0f)
            beta = 2.0f;
        
        if(gamma < 0.0f)
            gamma = 0.0f;
        if(gamma > 1.0f)
            gamma = 1.0f;
        
        if(n_order < 2)
            n_order = 2;
        if(n_order > 11111)
            n_order = 11111;
        
        inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
        outlet_new(&x->x_obj, &s_signal);
        outlet_new(&x->x_obj, &s_signal);
        x->x_out_clipping_bang = outlet_new(&x->x_obj, &s_bang);
        
        x->x_msi = 0;
        x->x_n_order = n_order;
        x->x_update = 0;
        x->x_beta = beta;
        x->x_gamma = gamma;
        // 2 times in and one time desired_in memory allocation (history)
        x->x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
        
        // table-symbols will be linked to their memory in future (dsp_routine)
        x->x_w_array_sym_name = gensym(w_name->s_name);
        x->x_w_array_mem_beg = (t_float *)0;
        x->x_wmin_array_sym_name = gensym(wmin_name->s_name);
        x->x_wmin_array_mem_beg = (t_float *)0;
        x->x_wmax_array_sym_name = gensym(wmax_name->s_name);
        x->x_wmax_array_mem_beg = (t_float *)0;
        
        x->x_clock = clock_new(x, (t_method)NLMSCC_tilde_tick);
        
        return(x);
    }
    else
    {
        post("NLMSCC~-ERROR: need 3 float- + 3 symbol-arguments:");
        post("  order_of_filter + learnrate_beta + security_value + array_name_taps + array_name_tap_min + array_name_tap_max");
        return(0);
    }
}

void NLMSCC_tilde_setup(void)
{
    NLMSCC_tilde_class = class_new(gensym("NLMSCC~"), (t_newmethod)NLMSCC_tilde_new, (t_method)NLMSCC_tilde_free,
        sizeof(t_NLMSCC_tilde), 0, A_GIMME, 0);
    CLASS_MAINSIGNALIN(NLMSCC_tilde_class, t_NLMSCC_tilde, x_msi);
    class_addmethod(NLMSCC_tilde_class, (t_method)NLMSCC_tilde_dsp, gensym("dsp"), 0);
    class_addmethod(NLMSCC_tilde_class, (t_method)NLMSCC_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
    class_addmethod(NLMSCC_tilde_class, (t_method)NLMSCC_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
    class_addmethod(NLMSCC_tilde_class, (t_method)NLMSCC_tilde_gamma, gensym("gamma"), A_FLOAT, 0);   // method: dithering noise related to signal

    //class_sethelpsymbol(NLMSCC_tilde_class, gensym("iemhelp2/NLMSCC~"));
}

Index: makefile.txt
===================================================================
RCS file: /cvsroot/pure-data/externals/iem/iem_adaptfilt/src/makefile.txt,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** makefile.txt	2 Aug 2006 14:02:28 -0000	1.1
--- makefile.txt	11 Jan 2007 17:40:10 -0000	1.2
***************
*** 18,24 ****
  # the sources
  
! SRC = sigNLMS.c \
! 	sigNLMSCC.c \
! 	sign_CNLMS.c \
  	iem_adaptfilt.c
  
--- 18,24 ----
  # the sources
  
! SRC = NLMS~.c \
! 	NLMSCC~.c \
! 	n_CNLMS~.c \
  	iem_adaptfilt.c
  

Index: iem_adaptfilt.c
===================================================================
RCS file: /cvsroot/pure-data/externals/iem/iem_adaptfilt/src/iem_adaptfilt.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** iem_adaptfilt.c	2 Aug 2006 14:02:28 -0000	1.1
--- iem_adaptfilt.c	11 Jan 2007 17:40:10 -0000	1.2
***************
*** 24,31 ****
  }
  
! void sigNLMS_setup(void);
! void sigNLMSCC_setup(void);
! void sign_CNLMS_setup(void);
! void sign_CLNLMS_setup(void);
  
  /* ------------------------ setup routine ------------------------- */
--- 24,31 ----
  }
  
! void NLMS_tilde_setup(void);
! void NLMSCC_tilde_setup(void);
! void n_CNLMS_tilde_setup(void);
! void n_CLNLMS_tilde_setup(void);
  
  /* ------------------------ setup routine ------------------------- */
***************
*** 33,40 ****
  void iem_adaptfilt_setup(void)
  {
!   sigNLMS_setup();
!   sigNLMSCC_setup();
!   sign_CNLMS_setup();
!   sign_CLNLMS_setup();
    	
    	post("----------------------------------------------");
--- 33,40 ----
  void iem_adaptfilt_setup(void)
  {
!   NLMS_tilde_setup();
!   NLMSCC_tilde_setup();
!   n_CNLMS_tilde_setup();
!   n_CLNLMS_tilde_setup();
    	
    	post("----------------------------------------------");





More information about the Pd-cvs mailing list