<div>I understand complex numbers used to represent rotation, so as to encode frequency in an easy to manipulate form, and I understand that the imaginary part can be disposed of when converting back to real signals and nothing is changed, but there's one bit that is hanging me up:
</div>
<div>&nbsp;</div>
<div>Using i is just a convention, a way to keep from mixing the two numbers.&nbsp; The square root of -1 is not really involved in any of it, because it doesn't exist.&nbsp; So why, when you multiply Z1 and Z2, do i*sin(a) and i*sin(b) multiply to -sin(a)sin(b)?
</div>
<div>&nbsp;</div>
<div>&nbsp;</div>
<div>Also, the decision (this is coming from Miller's &quot;Theory and Techniques&quot;) to multiply the complex constant A by the unit-value complex number Zn; this is convenient, but it seems rigged.&nbsp; Instead of letting Z have whatever amplitude it really has, in which case multiplying it (which already seems forced) by itself changes its amplitude, you force it to be 1 and add on&nbsp;the amplitude later.&nbsp; Nothing violated, but it seems artificial, like we fudge the numbers to make it come out right.&nbsp; If it is artificial, and just a way of simplifying sinusoid manipulation, then why even use artificial&nbsp;mathematical operations to explain it?
</div>
<div>&nbsp;</div>
<div>I already tried just moving ahead accepting these, but eventually something always&nbsp;throws me.</div>
<div>&nbsp;</div>
<div>&nbsp;</div>
<div>One more question... regarding how filters work, is there no intuitive way to express it?&nbsp; No shortcut so that rpole~ and rzero~ will at least make sense in theory before I push through all the math?</div>
<div>&nbsp;</div>
<div>-Chuckk</div>
<div><br clear="all"><br>-- <br>&quot;It is not when truth is dirty, but when it is shallow, that the lover of knowledge is reluctant to step into its waters.&quot;<br>-Friedrich Nietzsche, &quot;Thus Spoke Zarathustra&quot;
</div>